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Summary 
AESOP is a computer  program  for use in designing 

feedback  controls and  state  estimators  for linear multi- 
variable systems. AESOP is meant to be used in an 
interactive manner.  Each design task that  the  program 
performs is  assigned a  “function”  number.  The user 
accesses these functions either (1)  by inputting a list of 
desired function  numbers  or (2) by  inputting  a single 
function  number.  In  the  latter case the choice of  the 
function will in general depend on the results obtained by 
the previously executed  function. 

The  most  important  of  the AESOP  functions  are  those 
that design linear quadratic  regulators  and  Kalman 
filters. The user interacts with the  program when  using 
these design functions  by  inputting design  weighting 
parameters and by  viewing graphic displays of designed 
system responses. Supporting  functions  are  provided  that 
obtain system transient and  frequency responses, transfer 
functions,  and  covariance matrices. The  program  can 
also compute  open-loop  system  information  such as 
stability (eigenvalues), eigenvectors, controllability, and 
observability. 

The  program is written in  ANSI-66 Fortran  for use on 
an IBM  3033  using TSS 370. Descriptions of all sub- 
routines and results of two test cases are included in the 
appendixes. 

Introduction 
The  computer  program called AESOP  (Algorithms for 

Estimator  and  Optimal regulator design) was written to 
solve a  number of problems associated with  the design of 
controls  and  state  estimators  for linear time-invariant 
systems. The systems considered are modeled in state- 
variable form by a set of linear differential  and algebraic 
equations with constant coefficients. Two key problems 
solved  by AESOP  are  the linear quadratic regulator 
(LQR) design problem and  the steady-state Kalman filter 
design problem.  The  remainder of  AESOP is devoted to 
calculations in support of these two  problems,  mainly  for 
analyzing the  open-loop system and evaluating the 
resulting control  or  estimator designs. Thus  the overall 
program  can  be  subdivided as follows: 

(1) Open-loop  system analyses 
(2) Control  and filter design 
(3)  System response calculations 
The  AESOP  program was developed at Lewis for use 

in conducting design studies in propulsion system control 
(refs. 1 and 2). AESOP was an  outgrowth  of a previously 
developed  control design program called LSOCE (ref. 3), 
which had been  used in supersonic inlet controls  develop- 
ment (refs. 4 and 5) .  AESOP  differs  from  LSOCE  mainly 
in  that it was  designed to be  operated in an interactive 

manner,  whereas  LSOCE was strictly a  batch  type  of 
program.  In  addition,  AESOP  contains system response 
and evaluation features that  are not present in LSOCE. 
These  additions  tend to enhance  AESOP’S use as an 
interactive design tool. 

Other  control design computer  programs  appearing in 
the  literature  perform  computations similar to those  of 
AESOP.  Notable  among  the original LQR design 
programs are  ASP by Kalman and Englar (ref. 6) and  its 
Fortran version VASP (ref. 7). Subsequent  LQR design 
packages were the OPTSYS  program  of Bryson and Hall 
(ref. 8), the  ORACLS  program of Armstrong (ref. 9), 
and Honeywell’s DIGIKON (ref. 10). Computer-aided 
control system  design  program  development has 
accelerated in recent years. A  good  summary  of this 
development is contained in reference 11. Here,  over 20 
control design programs  and  packages, including 
AESOP,  are discussed in varying degrees of detail. They 
represent a variety of design methodologies,  ranging 
from classical single-loop approaches to multivariable 
LQR and multivariable frequency  domain  approaches, 
for  both  continuous and discrete formulations.  Most  are 
written in Fortran  and have  some  sort of interactive 
capability, but except for  a few commercially available 
packages,  most are neither completely  documented  nor 
generally available. AESOP,  at  the present time, is the 
only interactive LQR  type of control design program that 
is  in the public domain.  (Contact  COSMIC,  The 
University of Georgia,  Athens,  Ga. 30602, concerning 
the availability of this program.) 

The  AESOP  program is structured around  a list of 
predefined  and  numbered functions. Each function 
performs, basically, a single computation associated with 
control,  estimation,  or system response determination. 
For  example,  one  AESOP function computes the 
eigenvalues  of the  open-loop system matrix A, another 
function reads in the A matrix, etc. These functions are 
described fully in the section Description  of  AESOP 
Functions.  The use of these functions and  the  part  they 
play in AESOP  can be described in general terms with the 
aid of figure 1. The figure illustrates what the user of  the 
program  does (left side of fig. l), what  the  program  does 
(right side of fig. 11, and  the interaction between the user 
and  the  program. 

The user  begins  by defining the  problem to be solved 
(e.g.,  by defining the matrices that define the  state- 
variable model of the open-loop system). The user then 
provides this information to AESOP as input  data, 
generally storing it in a data file.  Next the  program 
“prompts”  the user to enter a list of function numbers 
that  are  to be  performed, in sequence, by AESOP  to 
solve the user’s problem.  Usually this list  of numbers is 
entered at  a  terminal,  but it can also be entered from a 
prestored data file. The  AESOP  program  then executes 
the desired functions in proper sequence, storing away all 
results on  an  output file (fig.  1) as “off-line output” but 



Figure 1. -Overview of AESOP program  operation. 

also displaying selected portions  of  the  results back at  the 
user’s terminal (fig. 1) as  “on-line  display.”  The user 
then decides whether to terminate  the  program or  to 
request  that  more  functions be performed.  The  program 
again  prompts  the user to enter  numbers  that  define the 
new functions, which can be entered singly or  as a 
number  string.  Typically,  one  of  the  functions  a user 
would enter,  at  this  time, would be one  that allows the 
user to vary some  problem  parameter.  In  this way the 
user can effectively interact with the  program in an  on- 
line  manner to achieve the desired design results. At the 
conclusion of  the  terminal session the user commands  the 
output  data  file to be printed  and  hard copies to be made 
of  any  graphic  output  generated  that was not previously 
displayed on-line. 

This  concludes  the overview  of the basic operation  of 
the AESOP  program.  The next section describes the 
various design problems  that  can be  solved by using 
AESOP,  indicating what function  numbers  the user 
would request in order to perform  the  computations. 
Following that section is the section AESOP  Program 
Operation.  Here, examples are  presented  of a typical 
dialog between the user and  the  program. Following that 
is  the section Description  of  AESOP  Functions, which 
describes each of the 78 functions, what input each 
requires,  and what calculations each performs. These 
latter  two  sections serve as a guide to which the user can 
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refer  as  necessary  while  running the  program. 
Appendixes  include  information such as a symbo! table, 
brief subroutine  descriptions,  and  two  test cases that  are 
useful  both for program  checkout  and for gaining  an 
understanding  of how the  program  operates. 

Theoretical  Background  and 
Problem  Formulation 

The  computations  performed by the  AESOP  program 
can be grouped  into five basic  categories. These cate- 
gories  are  illustrated  in  figure 2. This  section  presents  the 
equations that define  the  various  problems to be solved 
and  indicates the solution  methods used by AESOP. 
After  reading  this and  the next section, the reader  should 
be able to use AESOP to solve a number  of  “standard” 
problems by using “standard” sequences of  function 
numbers.  The  reader will then be able to devise other 
function  number sequences that would allow  other  more 
specialized problems to be solved. 

Open-Loop System  Description 

Before  beginning  any  control or filter design on  a 
linear  dynamic system, it is important to thoroughly 
analyze the open-loop system under  consideration.  The 
linear  open-loop system defined  for use throughout  this 
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Figure 2. -Control system design computations performed by AESOP program. 

report is given  in the following state-variable form  and where 
shown schematically in figure 3.  The  state equation is 

X = A x + B  u + D  w (1) v NMth-order  white-noise measurement vector 

where 

Z NMth-order measurement vector 

H NM-by-N matrix 

x Nth-order state vector 
u NCth-order control vector 

In addition to  the measurement vector an output vector, 
which represents unmeasurable outputs, is defined as 

w NDth-order  white-noise disturbance vector y = C  x+DOUT u (3) 

and A, B, and D are matrices of appropriate dimensions. where y is an NOth-order output vector. Finally, a set of 
Fortran symbols for matrices used  in the AESOP noise-free measurements called a set-point vector are 
program coding are used herein whenever possible. A defined. These represent outputs (NC in number) that  are 
measurement equation, defining the system’s measurable to be regulated to desired constant set-point values. This 
output vector is vector is given as 

z = z 1 + v  (2a) ysp=CSP x (4) 

z l = H x  (2b)  where  ysp  is an NCth-order set-point vector. 

Disturbance, w 

-++I +J-r Set-point ouQut ysp 

Control, u 
e -  

State, x 

1 

I 
Figure 3. -Block diagram of open-loop system. 
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Eigenvalues  and  Eigenvectors 

Of  prime  importance  in designing a control system  is 
knowledge of the open-loop system structure and 
stability. This knowledge affects the designer's choice of 
performance index  weighting matrices, sensed variables 
to use for control or estimation, etc. 

Open-loop stability is determined by the eigenvalues of 
the system A matrix. The system is stable if and  only if 
these eigenvalues Xi (i = 1, 2, . . ., N) all have negative 
real parts.  Consider the unforced version of equation (I), 

X=A x ( 5 )  

Define a new state vector X, relating to x through the 
transformation  matrix T as 

T X = X  
- 

(6) 

Substitute  for x in equation ( 5 )  to obtain 

- 
i = ~ - 1  A T X  (7) 

If we let T- 1 A T be equal to a diagonal  matrix A, 
equation (7) can be rewritten as 

- 

x = A  X (8) 

The diagonal elements of A are  the eigenvalues of A, T is 
the eigenvector matrix (a matrix whose columns are  the 
eigenvectors  of A), and x is defined as the modal state 
vector. The value of A is computed by  using AESOP 
function 501, and  the eigenvectors are obtained by  using 
function 402. To avoid complex arithmetic, a block 
diagonal form is  used for the  matrix A such that a 
complex  eigenvalue pair (hi, Xi+ 1) =(a + j P ,  a - j P )  
appears in the 2-by-2 diagonal block of A, 

C Y I  - P  

P I  CY 
""" 

where the CY'S are along the diagonal. Let the complex 
eigenvector pair (vi, vi+ 1 = y + j S ,  y - jS) correspond to 
the complex  eigenvalue pair CY +jB.  Then in the columns 
corresponding to  the defined diagonal block of A there 
appear two real vectors ti and ti+ 1 defined as 

t j=y+S 

t i+ l=y-S  
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Hence, when A is  block diagonal, T is  called a modifid 
eigenvector matrix.  AESOP  function 402 also calculates 
the so-called mode shapes. For a real eigenvector the 
mode-shape vector is the  same as the eigenvector. 
However, for a complex eigenvector pair the corre- 
sponding  mode-shape vector pair  contains,  in successive 
columns, the magnitude of qi and  the phase of qi. Each 
mode-shape vector is normalized by dividing all of  the 
elements by the magnitude of  the largest element. The 
phase of  the largest element  is  set to  zero,  and  the phases 
of all other components of  the vector are adjusted 
accordingly. 

Controllability,  Observability,  and Mode Shapes 

Once the eigenvalues and eigenvectors (mode-shape 
vectors) are calculated, it  is an easy task to determine 
controllability and observability. For this purpose, 
system equations (1) and (2a) can be rewritten in terms of 
the  modal  state vector as 

G = A x + T - l  B u 

Z = H  T X + V  

System controllability is determined 
elements of T- 1 B. The system is 

by examining the 
uncontrollable if 

elements in a row of T - 1 B are zero, meaning that it  is 
impossible to excite a component of  the modal state 
vector x with the control vector u. Also, using this modal 
formulation, one can  think of  the matrix T - 1 B as being 
the control effectiveness matrix. That  is, the relative 
magnitudes of the row elements of T- 1 B define the 
relative influence each control  input  has on a modal state 
variable (mode). For a meaningful comparison, however, 
the  control  inputs must be normalized (nondimen- 
sionalized). Normalization can be done by  using AESOP 
function  number 404. Normalization  (and  unnormaliza- 
tion) is  discussed in detail later in this section. The 
control effectiveness matrix is calculated by AESOP 
function 403. 

System observability can be determined similarly  by 
using the modal state  form.  From equation (10) it  can  be 
seen that, if  all  elements of column k of  the H T matrix 
are zero,  modal state k will be unobservable through 
measurement z. Also, the relative magnitudes of the 
elements of row k of H T define the relative contribution 
each mode makes to measurement zk. This  information is 
useful, for example, if one wishes to minimize the 
number  of measurements (sensors) required when 
designing a control system that is to shift certain system 
poles (modes, modal states). System observability (the 
H T matrix) is computed in AESOP by using function 
number 403. 



In AESOP  both  the controllability matrix (T - 1 B) and 
the observability matrix (H T) are printed out  in mode- 
shape format. This means that,  for T-1 B, when two 
successive rows k and k+ 1  relate to a complex modal 
state pair ( i k ,  &+ 9, the kth elements in  the columns of 
T- 1 B are magnitudes and  the (k + 1)th elements are 
phase angles.  Similarly, for  the H T matrix, for a 
complex modal state  pair, elements in the kth column of 
H T are magnitudes and those  in the (k + 1)th column are 
phase angles. 

Residues 

The availability of matrices H T and T- 1 B makes it 
very  easy to compute the system  residues. Consider the 
system  in modal state vector form given  by equations (9) 
and (10). Let B= T-  1 B and H = H T. Thus  equations 
(9) and (10) can be written as 

x = A x + B  u 

For a single-input-single-output linear system a transfer 
function g (s) can be written in  so-called residue form  as 

N 
g ( s ) =  E 'j 

j = ]  s-X, 

where  each of the N constants rj is defined as a residue at 
the transfer  function pole Xj. The residues define the 
relative magnitude with  which the system input affects 
the system output through each  system pole. This single 
input/output concept generalizes  directly to  the multiple 
input/output case. Here  the  transfer  function  matrix 
G (s) for the system of equations (loa) and (lob) can be 
written as 

or in residue form 

where now the N elements Rj are residue  matrices. Since 
A is a diagonal  matrix, we can rewrite the matrix 
( s I - A ) - ~  as 

1 N 
(sI-A)-l=diag( S-Aj --) = ,=] ,E s Z L  -5 

where 

0' 

1 

0 
\ 
\ 
\ 
\ 

0 

Substituting from equation (100  into equation (loe), we 
obtain an equation that defines the residue matrices, 
namely, 

Thus  the j t h  residue matrix is  simply 

For a real eigenvalue X, the elements of the corresponding 
residue matrix Rj are  real, being computed simply as  the 
(outer)  product of thejth column of H and thejth row 

For a complex eigenvalue pair (X,, X,+]) AESOP 
makes use of the modified eigenvector matrix  form for T, 
which means that H and B are also used  in that  form. 
Thus real arithmetic  can  be used  in computing the real 
and imaginary parts of the residue matrix. AESOP  prints 
out  that matrix in polar form (one matrix of residue 
magnitudes followed by one matrix of residue phase 
angles). The residues are computed along with open-loop 
controllability and observability checks  in function 403. 

of B.  

Steady-State  Linear  Quadratic 
Regulator  (LQR)  Design 

One of the primary  functions of  the  AESOP program 
is to compute  solutions to  the steady-state linear quad- 
ratic regulator problem. Because this problem has been 
well documented  (ref. 12, e.g.), the results are only 
briefly summarized herein. The system to be controlled is 
described by 

where the  state x is assumed to be measurable and  no 
plant  disturbances are present. 

A control  that minimizes the  quadratic performance 
index 
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J = l ,  (XTQCX+~XTNNU+UT(PCINV)-~  u)dt  (12) 

is  given  by 

OD 

U= -KC X (13) 

For  the  optimal  solution to exist, weighting matrices QC, 
NN, and PCINV must  be as follows: 

(1) PCINV is positive-definite 
(2) QC can be written as QC=M Q MT where the 

pair (M,A) is observable  and Q is symmetric  and 
positive-definite 

(3) QC - NN-PCINV-NNT is nonnegative-definite. 
Feedback gain matrix KC is found by solving the 
following matrix Riccati equation  for  matrix SS: 

SS(A - B.PCINV.NNT) + (A - B - P C I N V - N N ~ ~ S S  

- SS(B*PCINV.BT)SS + (QC - NN-PCINVeNNT) = 0 

(14) 

Then KC is  given as 

KC = PCINV(BT*SS + NNT) (15) 

Figure 4 shows the  structure  of  the  LQR solution. The 
gain matrix KC and  the Riccati equation solution matrix 
SS are computed in AESOP by function 801. The closed- 
loop  state  equation  for  the regulator system shown in 
figure 4 is  given  by 

X= (A - B-KC) X (1 6 )  

AESOP uses the eigenvector decomposition  method (ref. 
8) to solve the Riccati equation,  and as a  byproduct it 
prints out both  the eigenvalues and eigenvectors of 
A - B-KC. 

The Riccati solution  matrix SS theoretically is positive- 
definite  and  symmetric.  Three  error  checks  are  provided 
in AESOP (functions 805, 806, and 807) to determine the 
accuracy of the  computed SS. The eigenvalues of SS are 
computed  and  should be positive and real. The 
differences of the  off-diagonals  are displayed as a 
symmetry check. Finally, the computed SS is substituted 
back into  equation (14) and a residual matrix is 
computed. 

The  standard steady-state linear quadratic regulator 
problem just outlined assumes that no command  inputs 
are present. This  problem  can  be  modified to include set- 
point  inputs by introducing  a set  of NC set-point outputs 
defined by 

ysp = CSP x (17) 

These outputs  are  to be made  equal, in steady state,  to 
NC corresponding desired set points ysp. This is the 
so-called  nonzero-set-point  regulator  problem of 
Kwakernaak (ref. 12). The solution is to allow  a 
feedforward  term in the  control  such  that the control law 
of  equation (13) is modified to  the  form 

U=-KCX+KFFYspd (1 8) 

Figure 5 shows  the  configuration of the nonzero-set- 
point regulator. By stipulating that in steady state 
ysp = Yspd, matrix KFF can  be  computed as 

KFF=[-CSP  (A-B*KC)" B]" (19) 

Thus, with NC degrees of control  freedom available, NC 
outputs (ysp) can be positioned in steady state by using a 
feedforward matrix. The  matrix K I T  is  simply the inverse 
of the closed-loop LQR system transfer function matrix 
evaluated at s = 0. 

""""""""""""- 1 
I I 

i 
I 

I I  I I 

I 
I 
I 

4 
i 
! 

1 LQRgain  matrix ~ ~-$ """"""- """"- Plant J 
"K 

Figure 4. -Block diagram of linear  quadratic  regulator. 
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I I Plant I 

LQR gain  matrix 1 
Figure 5. -Block diagram of nonzero-set-point linear regulator. 

Steady-State  Kalman  Filter  Design 

The  second  major  computation  performed by the 
AESOP program is the design of the steady-state Kalman 
filter for  a linear time-invariant system described by 
equations (1) and (2) and shown schematically in figure 3.  
Data required to define the  problem consist of plant 
matrices A, B, and H and power spectral density matrices 
for  disturbance w and  measurement noise v. These  white 
zero-mean  Gaussian noise signals are described by their 
covariance matrices, namely 

and 

E(v(t)vT ( f + ~ ) )  =(RRINV)” 8 ( ~ )  (21 1 

where matrices Q and (RRINV)-’ are power spectral 
density  matrices.  For  the AESOP program  the 
disturbance  power spectral density matrix is entered as 
matrix QQ, where QQ is defined as 

A-PP + PP*AT-  PP*HT*RRINV*H*PP + QQ = 0 (24) 

Matrix PP is the covariance of estimation error e, where 
e = x - f. The  Kalman gain matrix is computed by  using 
PP as 

As is the case with the LQR gain solution, AESOP uses 
the eigenvector decomposition  method to solve the 
Riccati equation.  Thus as a  byproduct  the eigenvalues 
and eigenvectors of  the  Kalman filter (of matrix 
A - KE-H) are printed out. 

As mentioned in the case of the LQR the Riccati 
solution matrix (PP in this case) should be positive- 
definite and  symmetric.  Three  error checks are provided 
in AESOP to check on  the accuracy of the estimation 
error  covariance  matrix PP: 813, to check for positive- 
definiteness; 814, to check symmetry;  and 815, to 
perform a residual error check. 

Q Q = D  Q DT (22)  Normalization 
One useful operation  that is often  performed  on  the 

Figure 6 is a  block  diagram of a linear system  in matrices appearing in equations (1) to (4), which define 
“standard”  form with its associated Kalman filter. The  the  open-loop  system, is that of normalization. 
state  equation defining the  Kalman filter is Normalization alleviates possible numerical  problems; 

allows meaningful  comparison between control,  state,  or 

k=(A-KE.H) i + B  u+KE z output variables having  different units; and is generally 
(23) recommended for all control  and estimator design work. 

Generally one defines a  normalization  factor (usually a 
The  constant  gain  matrix KE characterizes the filter and full-scale or  operating point value) for each  component 
is obtained in AESOP by using  function 809. In  ob- of each  vector.  In AESOP a set of  diagonal 
taining KE, AESOP solves the  following Riccati normalization matrices are defined for  the system 
equation: variables as follows: 

I 
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Figure 6. -Block diagram of open-loop system with Kalman  filter. 

SCY 
SCYSP 

The normalization  (scale) factors SCX, etc., can be 
considered to be  diagonal matrices but are stored in 
AESOP as single-dimensioned  arrays.  Function 404 is 
provided in AESOP to normalize all of  the matrices that 
define the system and the control and estimation 
problems, namely: A, B, C, D, DOUT, CSP, QQ, and 
RRINV. As an example of the calculations performed, 
consider the  normalization  of  the CSP matrix. We have 
that 

ysp = CSP x (26) 

Explicit definition of the  normalization factors for x and 
ysp are given  by 

Ysp 4 SCYSP Gsp (27) 

x e s c x x  (28) 
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where  the  overbar indicates the normalized vector. Thus 
the normalized CSP matrix (call it WP) can be obtained 
as 

SIsp = csp x (29) 

where 

- 
CSP = (SCYSP) - ‘*CSP.SCX (30) 

The  other matrices are normalized in a similar manner. 
Note  that  performance  index weighting matrices QC, 
NN, and PCINV are  not  normalized in AESOP because 
they are considered to be  “free”  parameters to be 
manipulated by the designer. For  example,  “Bryson’s 
rule,”  the often-used rule of thumb  for choosing starting 
values of QC and (PCINV)-’ states  that  the matrices 
should be diagonal, where each  diagonal  term is simply 1 
divided by the  square of  the maximum (or operating 
point)  value  of  the  corresponding  state  or  control 
variable. If the system  is normalized,  the  same result can 
be  obtained by  simply making QC and PCINV identity 
matrices. 

If normalization is  used before  conducting LQR or 
Kalman filter designs, it may  be desirable to have 
normalized  gain matrices KC, KE, and KFF put back  in 
dimensional form (unnormalized).  Function 405 is pro- 



vided in AESOP  for this purpose. In  addition, this 
function unnormalizes the  error  covariance  matrix PP. 

Stochastic  Linear  Quadratic  Regulator  Design 

The solution of  the linear quadratic regulator problem 
requires that  the  state vector x be  completely  measurable. 
In general, this will not  be possible. Usually, only  a 
vector of NM  noisy  measurements z, which are linearly 
related to the  state x, will be present for use  by the 
control.  In line with the  separation principle (ref. 12), the 
optimal  control  for  this  situation is constructed by 
feeding back an  optimal  state estimate (generated by a 
K h a n  filter) through  the  optimal regulator gains KC. 
This  system is optimal with respect to minimizing  the 
stochastic equivalent of the  quadratic  performance  index 
given  by equation (12). That equivalent index is  given  by 

J=E(xTQC x+2xTNN u+uT(PCINV)" u) (3 1) 

AESOP  provides  the  means for solving this optimal 
control  problem by  using the previously mentioned  two 
functions for computing gain matrices KC and KE. The 
structure  of  the  complete stochastic LQR  problem is 
shown in figure 7. In  addition to gain computations it  is 
also of interest to  compute various system  responses to 
characterize  the  complete  closed-loop  system. Of 
particular interest in the case of the stochastic LQR 

system are  the values of  the covariance matrices for  the 
system state,  control,  and  output vectors. This is dis- 
cussed in the  following section. 

System  Response to Noise Inputs 

The  primary way to evaluate the overall performance 
of  a system controlled by a stochastic linear quadratic 
regulator (such as is shown in fig. 7) is to examine  the 
mean  square  or  rms values  of the various system vari- 
ables. More generally, the quantities one wishes to 
compute  are  the  covariance matrices for system vectors x, 
2, u, z, and y. In  particular,  the  mean  square values are 
the  diagonals  of  the  covariance matrices. The  two 
covariance matrices are XX, the covariance of the state 
vector x, and PP, the  covariance of the Kalman filter 
estimation error e. As was mentioned previously, matrix 
PP is computed by AESOP function 809, which conducts 
the  Kalman filter design. The  second  covariance  matrix, 
XX, is obtained by solving the following Lyapunov 
matrix  equation  (ref. 12): 

(A - B*KC)XX + XX(A - B.KC)T 

+ B-KC-PP + PP*KCT-BT + QQ = 0 (32) 

AESOP uses an iterative method developed  in refer- 
ences  13 and 14 to solve this equation. In comparison 

Set  po in t  

""""""""""" 1 

Set-point output, ys I j Disturbance, 
I *-:Noise. v I,,- Measurement, z 

Y S  

"- "" """""""- 

Figure 7. -Stochastic LQR block diagram showing  plant, Kalman filter, LQR gain matrix, and feedforward gain matrix. 
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with other  techniques this method  has been found  to be the  error  matrix,  and (3) computes an average error value 
especially effective for cases  where  system order N is as Trace  (E)/Trace (X). 
large (50 to 100). 

function 817. Also, this  function  computes  three  other Response  Calculations 
The Lyapunov solution is computed in AESOP Transfer  Functions  and  Frequency 

system covariance matrices, all simple functions of XX 
and PP. They are 

(1) The  covariance  matrix  of  control u, 

UU = KC*(XX - PP).KCT  (33) 

(2) The  covariance  matrix of measurement  component 
21 2 

ZZ = H*XX.HT (34) 

(3) The  covariance  matrix  of output y, 

YY = C.PP*CT+  (C - DOUTeKC) 

.(XX - PP).(C - DOUT-KC)’  (35) 

Note that covariances XX,  UU, ZZ, and YY can be 
computed  for cases  where either (1) no control is  used 
(open-loop response) or (2) no  Kalman filter is  used (state 
feedback only). The  open-loop case can  be  computed by 
simply calling function 817 without first computing either 
PP or KC (these two matrices will thus  be all zeros). The 
state  feedback case can be computed by first calling 
function 801 to  obtain KC and  then calling function 817. 

In addition to solving Lyapunov  equation (32) for  the 
state  covariance  matrix,  AESOP  has an  error check 
function (number 818) that gives information  on  the 
accuracy  of  the  solution.  Consider  a general Lyapunov 
equation 

It is often  quite useful to examine the characteristics of 
a state-variable system, either open  or closed loop, in the 
frequency  domain. For instance, one may wish to analyze 
the pole-zero structure  of  the system transfer  function 
matrix, given a state-variable system description. For  this 
purpose,  one  needs to be able to compute  transfer 
function poles, zeros, and gain given the system matrices. 
As another example, one may  examine the  transfer 
function  matrix  of  an  optimal  feedback controller to see 
if any simplifying pole-zero cancellations exist such that a 
lower order  approximation  can  be  made.  Here  too it is 
desirable to compute poles and zeros from  a state-space 
description. Frequency  response plots (for  example,  Bode 
plots) may  be desirable so that  one can evaluate, using 
classical frequency  domain  criteria,  the  response of a 
control  system  that was  designed  by using  LQR  methods. 
Or, given a state-space, open-loop system description, 
one may wish to compute  a  matrix  of system transfer 
functions  or  a  matrix of frequency  responses that can 
subsequently be  used  by a  frequency  domain  control 
design program.  For these reasons, it was decided to 
include in AESOP  the capability to compute  transfer 
functions  and  frequency  responses  for various systems 
and  subsystems defined in state-space terms. 

Consider the generalized nth-order system described by 
state  equations 

A X + X  AT+W=O (36) and  having “nc”  inputs u and  “no”  outputs y. These 
equations  could represent any linear system (open-loop 

Let the  actual  computed solution to equation (36) be x -  plant, Kalman filter, closed-loop regulator, etc.) by 
Substituting X into  equation (36) for X we obtain  appropriate choice of vectors %, f ,  and ii and matrices A, 

B,  e, and D. The  transfer function matrix G(s)  relating 
A % + %   A T + W = R  (37) output vector f to input vector ii can be written as 

where R is a residual matrix. Define an error matrix 
E e X - X .  Subtracting equation (36) from  equation 

f(s) =[C(sI-A)”B+D]u(s) =G(s)a(s)  

(37), we obtain  another  Lyapunov  equation 
AESOP allows the user to obtain solutions to equation 

transfer function G,(s) relating a  component uj(s) to  a 
component yi( s) in two  forms. 

AESOP function 818 uses matrix XX obtained  from  the  The first transfer  function  form  computed is where 
Lyapunov solution of function 817 and (1) solves for  the  each G,(s) is a ratio of  polynomials.  In this case the 
residual matrix, (2) solves a Lyapunov  equation to  obtain general expression for G;ii(s) is 

A E + E  AT-R=O (38)  (41) for  a variety of  system configurations. It computes  a 
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I ”  I k= 1 
G,(s) = ” 

Note  that since a  feedforward  matrix D is assumed, 
G;ii(s) may  have  equal-order (n) numerator  and 
denominator.  AESOP uses the  technique of reference 15, 
modified slightly to include a D matrix, to compute 
coefficients ak and bk.  Constants bk are  the coefficients 
of  the characteristic equation  of  and  are  thus  common 
to all G;ij(s). 

The second transfer  function  form  computed by 
AESOP is the so-called factored  form, where  the general 
expression is  given as 

m 

G i j ( s )  = (43 1 

k =  1 

where Zk and P k  are  the  transfer function zeros and poles, 
respectively. In  addition  to poles and zeros, AESOP 
computes gains Kg and  the  number  of  numerator zeros 
m (m In). The poles P k  are  obtained in AESOP  simply as 
the eigenvalues  of A. The  method for  obtaining m and zk 
depends  on  the value of Dg. 

For cases  where Do is equal to zero the values of m and 
Zk are obtained by using a  method  developed by  Davison 
(ref. 16). The  method is essentially based  on  a  concept 
from  root locus theory. That is, if a  proportional  loop is 
closed  between output f i  and  input ii, and  the  loop gain is 
allowed to increase to infinity, m of  the  root loci (poles of 
the closed-loop transfer function) will go to the m open- 
loop  transfer function zeros, and  the remainder (n -m) 
will go off to infinity. Davison’s  method successively 
computes  the eigenvalues  of such  a system  while 
increasing the  loop gain. It stops when the n -m 
“extraneous” eigenvalues  all  exceed a “large” value. 

For cases  where the value  of D, is nonzero,  the  number 
of zeroes and poles of  the  transfer function G;ij(s) are 
both  equal to n. In this case the zeroes are simply the 
eigenvalues  of the  matrix 

where 

This fact can  be seen  by applying  a  feedback control 

6 .- - keyi 
J -  (45) 

to the system of  equations (39) and (40) and  allowing gain 
k* to go  to infinity. In the limit the eigenvalues  of A* 
become  the zeros of the  transfer function G;ij(s). 

The  remaining  transfer function term in equation (43) 
to be  computed is gain Kg. AESOP uses the  technique 
described by Brockett (ref. 17) to compute this gain as 

Computations  for  two types of transfer  functions, 
polynomial  form  and factored form,  are performed in 
AESOP series 500 and 700, respectively. System 
configurations for which calculations are  done  are (1) an 
open-loop system, (2) a system  with state  feedback, (3) a 
system  with a Kalman filter in the  feedback loop,  and 
(4) an  optimal controller. Polynomial-form  transfer 
function coefficients are computed  for  the  purpose of 
plotting frequency responses. The  AESOP  program uses 
the  same subroutines to compute  frequency  responses 
and  transfer  functions  for each configuration, first 
forming the appropriate A, B,  e, and D matrices as 
functions of A, B, KE, KC, etc. Factored-form  transfer 
function information (poles, zeros, and gain) is mainly of 
interest in one of  two instances: (1) when investigating the 
structure of the  open-loop system, and (2) when 
examining  the  pole-zero  structure of an  optimal 
controller.  Therefore  data  are  obtained by AESOP  only 
for these two  configurations.  Frequency responses, 
however, are  obtained  for all four  configurations 
mentioned previously. Table VI1 in the next section 
outlines in detail which calculations AESOP  does 
perform. 

Figure 8 shows  the  open-loop  configuration for which 
transfer functions and frequency  responses  can  be 
calculated. Corresponding to the form  of  equation (41), 
the  four  transfer  functions  that  AESOP computes  here 
are 
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Disturbance, w "m 
Control, u State, x 

I 

I 
Figure 8. -Block diagram  of  open-loop system for which transfer  functions and frequency responses are obtained.  Inputs are u and w; outputs 

are 21 and y. 

Control  to  output: 

Y(S) =[(sI-A)" B+DOUT]U(S) (47) 

Disturbance to  output: 

y(s) = C ( s I - A ) "  D W(S)  (48) 

Control  to measurement: 

Z(S)  = H ( s I - A ) - '  B U ( S )  (49) 

Disturbance to measurement: 

Figure 9 shows  the  second  configuration -a system 
with state-variable feedback.  Here AESOP computes  the 
following frequency  responses by  using disturbance w as 
the  input: 

Disturbance to  output: 

y (s) = ( C -  DOUT.KC)[(SI - (A - B*KC)] - D w (s) 

(51) 

Disturbance to control: 

U(S) = -KC[sI-(A-B-KC)]" D W(S)  (52) 

Disturbance w is not explicitly  used  in the design  of the 
(noise free) linear quadratic regulator (e.g., eq. (14)). 
However, it is instructive to examine its disturbance 
response in the frequency  domain. 

Figure 10 depicts the configuration where disturbance 
w is explicitly considered in the control system design, 
namely the stochastic linear quadratic regulator. The 
overall system order in this configuration is 2N, there 
being N states x and N state estimates 2. In obtaining 
frequency  responses AESOP first forms  partitioned sys- 
tem matrices before calling the subroutine  that  computes 
the responses. The following responses are  computed: 

Disturbance to  output: 

Control, u 
r 

i 
"""""""""""" 1 

I 
i 
! output, y 
I *  
I 

I I 

I 
DOUT h' I 

i _"" -"I Plant i 
LQR gain matrix " 

Figure 9. -Block diagram  of LQR configuration used for obtaining frequency responses input is w; outputs are y and U. 
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I 
I 
i 
I 

i 
4 

i 
I I DOUT] I I 
L "" 1 """""""" 
i 

I i 
I i 

i 

Plant J 
Control, u LQR gain  matrix - 

"""""""""- - 
Kalman  filter 1 

% 

I 

I 

'rState  estimate. 
I - 

W f  
I I 

I i Kalman  filter J 
Figure 10. -Block diagram of stochastic LQR configuration used for obtaining frequency responses. Input is w ;  outputs are y. z ,  and u. 

Y (s) = CTOT (SI - ATOT) - DTOT w (SI 

Disturbance to measurement: 

Z(S)  =HTOT(SI-ATOT)-~ DTOT W ( S )  

Disturbance to control: 

u ( S) = KCTOT (SI - ATOT) - DTOT w (S ) 

where 

- B-KC 

DTOT= - - - -  , 2 N X N D  1 
CTOT = [C I - DOUT*KC], NO X 2N 

HTOT=[H IO], NMx2N 

KCTOT=[OI -KC], NCx2N 

Note that measurement noise, although a consideration 
in the Kalman filter design, is not considered here as  an 
input. 

The last configuration for which frequency responses 
as well as transfer  function zeros and gain is computed is 
the optimal  controller, shown in figure 11. This is  simply 
the feedback portion of  the  control loop of figure 10, the 
stochastic regulator.  The desired response is for measure- 
ment z as an input and  control u as an  output. This 
transfer function  can  be expressed as 

u (s) = - KC[SI - (A - B-KC - KE'H)] - KE Z(S) (56) 

It has been noted in the  literature  that  this optimal 
controller transfer  function  can have some interesting 
properties;  for example it  can sometimes be unstable (ref. 
18) or can have right-half-plane zeros (ref. 1). 

Transient  Response Calculation 

The AESOP program  computes  and plots transient 
responses for several important system configurations. 
Consider again the general time-invariant system,  which 
is described in state-variable form  as 

% ( t )  = A  W ( t )  +B h ( t )  (57) 

f ( t )  =c W ( t )  + D  h ( t )  (58) 
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Control. u LOR gain  matrix 

"""""" ---"" 

i Kalman  filter I 
I ,-State estimate, ii 

I 
I 

Meaprement,  z 

I i 
L """"""""- Kalman  filter i 

Figure 1 1 .  -Optimal  controller,  comprising  Kalman  filter  and LQR gain  matrix.  Input  is  measurement z and  output is control u. 

In AESOP it  was  desired to solve these general equations (1) Open-loop system -The  equations  for this system, 
(57) and (58) for  two cases: (1) an initial condition %(O), shown in figure 3,  are 
and (2) a step change in input ti ( t )  . The  normal 
approach,  and  that  taken in AESOP, is to discretize X= A x + B u (65) 
equation (57) so as to obtain  the exact solution at time 
points to, t l ,  . . ., t k  that  are spaced DT seconds apart. y = C x + DOUT u (66) 
The resulting discrete difference equations  are  thus 

AESOP calculates and plots x and y for  ITRMX  time 

(59) 
points for either 

(a) A step  input applied to component i of input 

(60) u ( t )  
(b) An initial condition x(0) on  the ith component of 

the  state vector x ( t )  . 
These  computations  are  performed by AESOP functions 

(61) 601 and 602, respectively. 
(2) Closed-loop linear quadratic regulator -Figure 4 

(62) shows  the  configuration of this system. The describing 
equations  are 

and  matrices I@ and r are given by the series 
representations 

and 

A-DT2 A2.DT3 + 

= (,.,,, - + ~ 2! 3! 

. .  

X= (A - B-KC) X (67) 

y = C  x+DOUT u (68) 

Matrices A, B ,  e, and D are  appropriately  formed by 
AESOP and variables x, y ,  and u = - KC x are calculated 
and plotted. This is done  for  an initial condition xi(0) on 
a selected component of x(0). Function 603 accomplishes 
these calculations. The responses for x, y ,  and u can  be 
compared by the user  with the  open-loop responses in 
order  to help evaluate a  particular LQR design. 

(3) Nonzero-set-point linear quadratic regulator -This 
system, shown in figure 5, is described by one  state  and 
three "output"  equations: 

(63) 

. . )B (64) 

X = (A - B-KC) X + B*KFF Yspd (69) 
Matrix r is computed by assuming that  input ti( t )  is 
constant over t, st < t ,  + 1. The series  in equations (63) Y = (c - DOUT-KC) x + D 0 U T . m  Yspd (70) 
and (64) are carried out until the desired accuracy in + 
and r is achieved. ysp = CSP x (71) 

The general procedure  just described is  used to 
compute transients for  the following three situations: U =  - K C X + m y S p d  (72) 
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Here  again,  AESOP  forms the  appropriate matrices 
before computing the responses. The response of interest 
here is to a step change in a selected component of  the set- 
point vector Yspd. Of interest to  the user in this con- 
figuration are such things as rise time  and  overshoot of 
the kth  component of ysp in response to a step  change  in 
the kth component of Yspd; interaction -the response of 
the kth  component of ysp to a change  in the ith component 
of Yspd; and  the magnitudes of  control variable 
excursions. The computation and response plotting for 
the  nonzero-set-point  regulator  are  performed by 
AESOP  function 604. 

AESOP Program  Operation 
This section provides an overview of how to operate 

the  AESOP  program.  In  particular,  it discusses how the 
user interfaces with the program within the IBM 370 TSS 
PCS (Program Control System) environment, how to 
enter data, how to enter a string  of  control  numbers  that 
dictate the series of AESOP  functions to be performed, 
and in general, how the user interfaces with the program 
at the  “terminal,” not Fortran, level.  (It  is assumed that 
the reader is familiar with PCS commands  and  the 
operation of the 370 TSS system.) 

Program  Structure 

The general structure  and  operation of AESOP was 
described  in the Introduction and shown schematically in 
figure 1. A more detailed diagram of  the program show- 
ing the main AESOP  program  and nine main subroutines 
is  given  in figure 12. Each main subroutine  contains a 
number of related AESOP  functions.  The  numbers  above 
the main subroutine boxes  in figure 12 indicate the 
function series that each main subroutine  contains (800 
contains  functions 801 to 899,  etc.). The details as to 
what  each function  does will be discussed later in this 
section. 

Main  subroutines 

Program 
control 

h M  
I 

All input  and output performed by the main  AESOP 
program relate to program  control  and required inter- 
facing with the user. The main program (1) initializes 
default or reference values, (2) accepts a string of 
function  numbers that  the user  wishes to have performed, 
(3) performs checks to see whether the user has requested 
functions to be  done  in a reasonable order,  and (4) calls 
the  appropriate main  subroutines in  which the desired 
functions reside. 

To  run  the  AESOP program, the user first calls the 
PROCDEF  (for PROcedure DEFinition) AESRUN, 
defined in  appendix  D.  Through use of TSW370 datadef 
(DDEF)  statements,  AESRUN 

(1) Defines (“datadefs”)  the library  dataset (file) that 
contains the compiled AESOP  program  and all sub- 
routines  and  then  loads the program 

(2) Defines the link to  the graphics package that 
contains  graphics  subroutines called  by AESOP 

(3) Links (“datadefs”)  Fortran unit numbers with 
specific dataset (file) names so that these  files can be 
written to  or read  from  during the subsequent AESOP 
run 
AESRUN  has a single parameter that is used to identify 
all output datasets to be generated during the  AESOP 
run. After calling AESRUN, the user  types “AESOP”  to 
run the program. 

Operating  Procedure 

The key  element  in the use of AESOP is the single- 
dimensioned function  number  array  (Fortran symbol 
IFN).  The user loads, in sequence, this vector  with the 
numbers of  the  AESOP functions that  are  to be per- 
formed.  The use of the  IFN vector and the general 
operation of AESOP will  be  explained  with the aid of the 
flow chart of figure 13.  The user many also refer to the 
terminal listing included in appendix C for test  case I  for 
an actual example of how AESOP is run.  First,  the user 
types “AESRUN” followed by  its parameter.  The 

AESOP 

I 

Matrix 
formation 

Open-loop 
system 

I Transient I I Transfer 1 1 :::fz/and I I User-supplied 1 responses functions filter design subroutines 

Figure 12. -AESOP program  structure. 
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I AESRUN [I. D. PARAMETER] I 

Heavy blocks indicate 
occurrence of prompts or 
terminal responses 

ON-LINE PLOTS.  Y  OR N? IONPLT = 1 

P R  EQUAL  TO a,CHARACTERS) 

ENTER  THE  PARAMETER YOU 
USED  FOR AESRUN 

1 . 
T I 

EXTENDED TERMINAL OUTPUT? I P R T  = 2 

DDEF 21 TO THE 

I 4 ENTER NAMELIST NI DATA (IFNIJ 
I 

r“F“ M Z  = 0 

Figure 13. -Flow chart  for AESOP program. 

computer  responds with information  that  the  libraries 
have  been  set up  and all datasets have  been datadeffed. 
The user then types “AESOP” to call the main  program. 
(Note that  the heavy  blocks in figure 13 indicate  either 
user input  commands or messages printed out  at  the 
user’s terminal.)  The  program  then  responds by prompt- 
ing the user with the message: 

DO YOU WISH  TO MAKE PLOTS, Y OR N? 

If the response  is “Y,” the user is then asked to 

ENTER THE  PLOT  NAME - 8 ALPHANUMERIC 
CHARACTERS 

16 

This  name will  be  used to name  the plot dataset in which 
any  plots  generated will  be stored. Next, the user is asked, 

DO YOU WISH  TO MAKE ON-LINE  PLOTS, Y or N? 

If the reply is “Y,”  the  program sets an internal flag that 
will cause the  program to  PAUSE  after each on-line plot 
is  displayed to allow the user to view it.  Off-line  plotting 
requires no such action  to be taken. Finally, the user is 
asked for  two pieces of information  that will appear on 
all plots for identification  purposes: 

ENTER TODAY’S DATE (LESS THAN OR EQUAL 
TO 20 CHARACTERS) 



I 
-1s IFN(MZ)  the ntmber of a n  executable FCN?% . ._ 

Prerequisite 
error 

1 I check I 

I YOU  HAVE  NOT  EXEC- 
UTED  THE  FOLLOWING 
PREREQUISITE 
FUNCTIONS 

t t 
THESE  ARE  THE FUNCTIONS  YOU  HAVE  RUN  THUS 
FAR.  THE  PRESENT FUNCTION I S  NOT  A LEGIT1 
MATE  ONE.  YOU WILL NOW  HAVE  A  CHANCE  TO 
REPLACE I T  WITH  ONE  GOOD  ONE,  TO TERMINATI 
OR  TO  CENTER  A LIST OF FUNCTIONS. 
TYPE  Y  TO  ENTER  ONE  REPLACEMENT  FUNCTION; 
TYPE  N  TO  ENTER A LIST OF FUNCTIONS 

.) 

TO  COMPUTE  FURTHER, 
ENTER IFNII3), ONE  PER 0 REPLACE  THE  CURRENT 
LINE; TO TERMINATE,  FUNCTION; I F  THE  NUMBE 
ENTER 999 (LAST ENTRY I S  999, THE  PROGRAM 
MUST BE  A  RETURN) 

Read new function Read IFN(MZ) 
number  into  IFN 

DDEF  NAME OF N1 
DATASET to 21 h 

I I 
I + +  J 

End 

Figure 13. -Concluded. 

and provided as part of AESOP.  Thus  the preceding  messages 
and  prompts  would  be tailored by each user to reflect the 

ENTER THE PARAMETER YOU USED  FOR specific graphics package  being used. 
AESRUN  After  the graphics-oriented prompts  are  handled,  the 

In view of the  fact  that graphics subroutines  are  rather 
specific to  the user’s computer  system,  they  are  not  EXTENDED  TERMINAL  OUTPUT? 

program displays the message 

17 



(This question and all subsequent ones are  to be  answered 
“Y” (yes) or  “N” (no). All output produced by the 
program is stored on  the  output  dataset, which the 
PROCDEF AESRUN datadeffed to unit 06. Two subsets 
of  this  output  are  available  for display on-line at  the 
user’s  terminal.  The  EXTENDED  TERMINAL 
OUTPUT  option (appendix  D) allows the user to view a 
more extensive subset  of data if desired. 

Next, the user is prompted with the message 

READ  IN N1 FROM STORAGE? 

The N1 referred to here is the name  of  a Fortran 
NAMELIST  that  contains  the vector IFN.  For  problems 
that  are solved  over and over again, using the  same 
AESOP functions  but  different data, it is  convenient to 
store  the NAMELIST N1 in a  dataset to avoid  having to 
type it each  time at  the  terminal. If this is the  case, the 
user would respond with “Y” and  the program would 
print out 

DDEF 21 TO  THE N1 DATASET 

At  this  point  the user would then type the  required 
datadef  statement,  for  example, 

DDEF FT21FOOl,VS,MYNlDS 

where  dataset  MYNlDS  would  contain  typical 
NAMELIST  data such as 

&N1 IFN=201,701,999 &END 

However, to enter  a new  set  of numbers  into the  IFN 
vector,  the user  would enter “N”  and  the program would 
respond with 

ENTER NAMELIST DATA AS ’&N1 IFN = , , , &END 

At  this  point  the user  would type a NAMELIST N1,  such 
as was  given  in the preceding  example. 

The  IFN  string  can be terminated in two ways.  If the 
user ends it  with a  number  greater than  or equal to 999 (as 
was done in the preceding  example), the  AESOP  program 
will  execute all of the requested functions and then 
terminate  the  run.  (The  number 999  is a request for 
termination.) If the user ends  the  string with the  number 
of an executable function,  the  program will allow more 
function  numbers to be entered when the present string of 
functions  has been executed. In either  case,  as  soon as the 
NAMELIST has  been read by the  program,  the  program 
displays all of the elements of  the  IFN vector at  the 
terminal and  starts  to execute the requested series of 
functions. 

Figure 13 shows that  the  main  program indexes integer 
MZ each  time just  before  it begins to execute a function. 
This integer denotes the element of  the  IFN vector that 
contains  the  number  of  the  function  about  to be 
executed. The  program  then  performs  four successive 
checks on  IFN (MZ), the MZth  element of  IFN. These 
checks are 

(1) Is  the  IFN(MZ)2999? If so, terminate  the 
program; if not,  continue checking. 

(2) Is  IFN(MZ) I 100 but  not  equal to zero? If so, you 
have  requested a nonexisting function  and will  be  allowed 
to change the requested  number. 

(3)  Is IFN(MZ) = O? If so, you  have  reached the end of 
the  function  number  string requested and will  now  be 
able to enter  additional  function  numbers if desired. 

(4) Is  IFN(MZ)  the  number of an existing executable 
function in series 100 to 900? If so, the function will be 
executed;  if not, you  will  be  allowed (as in check (2)) to 
change the requested  number. 
As  an  example,  first, assume that the present IFN(MZ) 
encountered is a nonexisting function  number (i.e., 
checks (2) or (4) above were failed). The  program dis- 
plays the messages 

THESE  ARE  THE  FUNCTIONS YOU HAVE  RUN 
THUS  FAR 
nnn 
THE  PRESENT  FUNCTION  IS  NOT A LEGITIMATE 
ONE, YOU WILL NOW HAVE A CHANCE  TO 
REPLACE  IT  WITH  ONE  GOOD  ONE OR TO 

TIONS.  TYPE Y TO  ENTER  ONE  REPLACEMENT 
FUNCTION;  TYPE N TO  ENTER A LIST OF 
FUNCTIONS 

TERMINATE  OR  TO  ENTER A LIST OF FUNC- 

If the user types “Y,”  the  program responds with 

TYPE  IN  AN I3 NUMBER TO  REPLACE  THE 
CURRENT  FUNCTION; IF  THE NUMBER IS 999, 
THE  PROGRAM  WILL  TERMINATE 

The user would then  enter  a new function  number  and  the 
program would repeat the  four checks. If the new 
number is that  of  an executable function,  the  program 
proceeds to execute the  function. 

If the user types “N” in response to  the previous 
prompt,  the program will display the message 

TO  COMPUTE  FURTHER,  ENTER  NEXT 
FUNCTION NOS. (I3), ONE  PER  LINE; 
TO  TERMINATE  ENTER 999 (LAST  ENTRY MUST 
BE A RETURN). 

The user may  then  enter  a series of function  numbers, 
hitting “RETURN”  after each three-digit number  and 

18 



hitting  “RETURN” twice after  entering the last  number 
in  the series. The  program  also  responds with the 
preceding prompt whenever  it encounters  IFN(MZ) = 0, 
which  is the indication that  the end  of  the previously 
requested  function  string  has been reached. 

The  previous  paragraphs  have  dealt with situations 
where the  program  detects  nonexistent  function  numbers 
in the input  string.  In the case where the function  number 
is correct,  the main AESOP  program  then calls the 
appropriate  main  AESOP  subroutine  in which the  func- 
tion resides. At that point  a prerequisite  check is begun. 
As a user aid  the  AESOP  program  contains  a  table  of 
prerequisite  functions  (appendix F). The  program checks 
the  prerequisite  table  immediately  before executing each 
requested  function to insure  that the specified pre- 
requisite  functions  have  already been performed.  For 
example,  suppose  the user enters  function  number 401, 
which requests  that  open-loop eigenvalues (of the A 
matrix) be computed,  without preceding this  number 
with either  number 201 or 202, the  functions  that  form or 
read in data  that  define  the  system.  Just  before calling 
function 401 the program  checks the prerequisite  table 
and  detects  that  the  proper  prerequisites (either function 
201 or 202) have not been performed  prior to this func- 
tion.  The  program  then  displays  the message 

YOU HAVE NOT EXECUTED  THE  FOLLOWING 
PREREQUISITE  FUNCTION(S) FOR FUNCTION 401 

and  then  prints  out  pertinent  function  numbers.  It  then 
displays  the message 

IF YOU THINK YOU  KNOW WHAT YOU ARE 
DOING  AND  WISH TO IGNORE THE PREREQS 
AND  CONTINUE  ON  TO  DO  THIS  FUNCTION, 
TYPE Y AND  RETURN; OTHERWISE, JUST 
RETURN 

The  prerequisites  in the  table  for  each AESOP function 
were selected so as  to catch  most, if not  all,  errors a user 
might make in selecting a series of interdependent  func- 
tions  that  could  lead to calculations that would produce 
major  errors. These would be  errors  such  as  zero  divides 
during  inversion  of a singular  matrix,  etc.  It was felt that 
protecting  against  these  nuisance  errors would make it 
less likely that a user would have to restart  the  program  in 
midcourse because of a major nonrecoverable  error. 
However, it is still possible to select a series of  functions 
that  produce  nonsensical  results even though  prerequisite 
checks show no  error. 

To terminate  the  program, the user types “999” when 
the program asks for  more  function  numbers. The  pro- 
gram will then  display the message 

STORE THE  Nl FOR  THIS RUN? 

This allows the user to store  the  IFN  vector, which  was 
just used in  the  present run,  on a dataset  for possible 
future use.  If this is desired,  the user replies with “Y” 
and will receive the message 

DDEF  NAME OF N1 DATASET  TO 22 

The user would execute the required  datadef, using 
whatever dataset  name was desired, and then  type “GO” 
to cause  the  program to terminate. If the  IFN  array is not 
to be  stored,  a  previous  response of “N” would 
terminate  the  run  immediately. 

Data  Input and Output 

A key aspect  of the  AESOP  program is the  handling  of 
data  input  and  output.  The primary  input  and output 
device is the user’s terminal. Most of the data sent or 
received through  the  terminal  pertain to program  control, 
as was demonstrated  in the examples in the previous 
section.  That section also showed two examples of how 
the  program accesses data  that  are  stored in a  dataset 
(IFN,  read  from  unit 21) and how the  program writes 
data  out  to  a dataset  (writing  IFN onto unit 22). In the 
program,  however, 14 unit  numbers  are used for  input 
and  output of data (in addition to unit 02, reserved for 
the terminal, and unit 06, reserved for  the high-speed 
printer  output). All units are listed in  table  I  together with 
the  names,  contents, and  format of their  associated 
datasets.  Dataset names are created by the PROCDEF 
AESRUN, which appends  the  characters in parameter $1 
to  an  identifying  prefix.  For  example,  referring to table I, 
if the  parameter $1 were entered as XYZ,  the PROCDEF 
would datadef  unit 08 to dataset  CGXYZ.  This  dataset is 
the  one in which the  control  gain  matrix KC is stored. 
Other  datasets  that  are  identified by using the  parameter 
$1 are  those  datadeffed to unit 09 (containing the Kalman 
filter  gain  matrix),  units 10 to 14 (containing  frequency 
response  magnitudes and phase angles), unit 15 
(estimation  error  covariance  matrix), unit 16 (control 
Riccati equation  solution  matrix),  and  unit 17 
(feedforward  gain  matrix).  The  remaining  units, 33 and 
34, are  for datasets that  store  the  data  that define  the 
design problem to be solved by AESOP, namely the 
open-loop  plant data (unit 33) and normalizing  factors 
(unit 34). The user must  datadef  these  units  and specify 
the names  of  their  associated  datasets. 

Much of the  input  data  for AESOP is in NAMELIST 
form.  Table I1 lists  all  NAMELIST’s used by the 
program and  the names of the  Fortran  variables 
contained  in  each. A key NAMELIST  is  MATDAT, 
which contains all matrix  coefficients  and  dimensions 
needed to define the problem to be solved. NAMELIST’s 
CONPAR  and  ESTPAR, which are useful when 
modifying basic problem data, contain  subsets  of  the 
variables  contained  in  MATDAT.  CONPAR is used for 
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Un i t  

- 

02 

08 
06  

09  
10 

11 
12 
13 
1 4  
15 

17 
16 

21 
22 
33 
34 

Dataset  
name 

""_" 
OUTBla 

CGQ1 
EG$l 

PFRUZ81 

PFRUYBl 
PFRWZ$l 
PFRWY$l 

CFR51 
PPQl 
SS81 
FFGSl 
(b) 
(b) 
( b )  
(b) 

I m L t  I. - U H I H ~ ~ I ~  HNU UNIIJ uxu ~ U K  Y K U ~ K H M  IIYYUI HIYU u u I r u I  

C o n t e n t s   o f   d a t a s e t  
~ " ~ 

. .  - 

All t e r m i n a l   i n p u t  and o u t p u t  

KC, c o n t r o l   g a i n   m a t r i x  
H igh -speed-p r in te r   ou tpu t  

KE, Kalman f i l t e r   g a i n   m a t r i x  
Frequency  response,  z(  IMEAS)/u(  JINC) 

Frequency  response,  y( IOUT)/u(JINC) 
Frequency  response, z (  IMEAS) /w(  JIND) 
Frequency  response,  y(IOUT)/w(JIND) 
Frequency  response, u( J I N C ) / z (  IMEAS) 
PP, e s t i m a t i o n   e r r o r   c o v a r i a n c e   m a t r i x  
SS, c o n t r o l   R i c c a t i   s o l u t i o n   m a t r i x  
KFF, f e e d f o r w a r d   g a i n   m a t r i x  
I F N   v e c t o r ,   c o n t a i n e d   i n  NAMELIST N1 
IFN  vec tor ,   con ta ined i n  NAMELIST N 1  
Open-loop p l a n t   d a t a ,  NAMELIST'S MATDAT and REFS 
Vorma l i z ing   f ac to rs ;  NAMELIST NRMS 

"" . . 

1 Format 
I 

Var ious  

Unformat ted  
Var ious  

I 

V 
NAMELIST 

Funct ion   where  
r e a d / w r i t t e n  

Many 
Many 

205/802 
206/810 

.. . 

""""""" 

""""""" 

""""""" 

208/816 

209/820 
207/808 

Main  program 
Main  program 

202 
404  and  405 
"~ "" - 

"_ 
Comments 

Te rm ina l   i npu t   and   ou tpu t  

See t a b l e  VI f o r   d e t a i l s  
on f requency  responses 

""""""""""-"""- 

F o r   i n p u t   o f   I F N  
F o r   o u t p u t   o f   I F N  
Usua l   source   o f   p rob lem  da ta  
"""""""""""""" 

a $ l   i s   t h e   p a r a m e t e r   f o r  PROCDEF AESRUN; it serves  as an a r b i t r a r y   i d e n t i f y i n g   t a g   ( f e w e r   t h a n   f o u r   c h a r a c t e r s )   f o r   t h e  

bUser   spec i f i ed .  
naming o f   d a t a s e t s ) .  

TABLE 11. - NAMELISTS USED I N  AESOP PROGRAM 
-~ . ~. 

NAMELIST 
. .  ~ 

CONPAR 

ESTPAR 

MATDAT 

NRMS 

N 1  

REFS 

V a r i a b l e s   i n  NAMELIST 

QC, NN, PCINV 

QQ, RRINV 

A, 6 ,  C ,  0, H, DOUT, CSP, 
QC, NN, PCINV, QQ, RRINV 
N, NM, NC, NO, NO 

SCX, scu, SCY, scz, SCYSP 

IFN 

TSFTR,  OT, F I ,  DELF, ZERMAX, 
4MPSP, AMPSR, AMPICX, IF,  ISPACE, 
IOUT. ~ IMEAS. -JINC. JINO. -ITRMX. 
UCURV, LINLOG, MSPY,  MSPYSP, ' 

rlSPU, MSROLY,  MSROLX,  MICCLY, 
UIICCLX,  MICCLU,  MICOLY,  MICOLX 

making changes in performance  index weights, and 
ESTPAR is  used for varying  noise  matrix  elements. 

NAMELIST NRMS contains  normalizing factors 
whose use is described by equations (26) to (30). The 
remaining  NAMELIST, REFS, is  used for setting  various 
parameter values that specify such  things as time  steps, 
frequency  point  spacing  and  numbers,  perturbation 
amplitudes,  and  input  and  output selection indices. Table 
I11 specifies each  parameter in REFS  and its default  value 
and  indicates  in which AESOP  function  each  parameter 
is used.  For a more detailed explanation of each 
parameter, refer to the  appropriate  function  description 
given in  the next section. 

20 

I npu t   sou rce  
~ ". 

- . .  

Termina l  

Terminal  

T e r m i n a l   o r   d a t a s e t  

Oataset 

Termina l  

Te rm ina l   o r   da tase t  

"" ~~ . . . 

Comments 
~ .. ~~ . 

r e a d   i n   f u n c t i o n  203 
F o r   r e v i s i n g   w e i g h t i n g   m a t r i c e s ;  

F o r   r e v i s i n g   n o i s e  power s p e c t r a l  
d e n s i t i e s ;   r e a d   i n   f u n c t i o n  204 

P r i m a r y  means o f   e n t e r i n g   s y s t e m  

changed i n   f u n c t i o n  210 
data;   read i n   f u n c t i o n  202; 

r e a d   i n   f u n c t i o n  404 o r  405 
C o n t a i n s   n o r m a l i z i n y   f a c t o r s ;  

P r o g r a m   c o n t r o l ;   r e a d   o r   w r i t t e n  
i n  main  program 

See t a b l e  I11 f o r   d e f i n i t i o n   o f  
a l l   v a r i a b l e s  and d e f a u l t   v a l u e s ;  
s e t  i n  main  program;  change i n  
f u n c t i o n  101; r e a d   i n   f u n c t i o n  
202 

". . . " 

Description of AESOP Functions 

Each AESOP function will  now be described in 
sufficient  detail so that this section can serve as a primary 
reference when  using the  program. All functions, as 
indicated previously, are  grouped  into  nine series (series 
100 to 900). When possible, a general  description will be 
provided for each series, with an accompanying table 
included to show similarities and differences among 
functions within the series. Also, whenever possible, the 
reader will be referred to appendix C, test  case I, for  an 
example of the use of  each  function. 



TABLE 111. - DEFINITION OF  PARAMETERS  CONTAINED I N  NAMELIST  REFS 

V a r i a b l e  

DT 

ITRMX 
AMPSR 
AMPSP 
AMPICX 
MSROLYa 
MSROLXa 
MICOLYa 
M ICOLXa 
MICCLYa 
M ICCLXa 
M ICCLUa 
MSPYSPa 
MSPYa 
MSPUa 

F I  
DELF 
NCURV 

L INLOG 

I F  
ISPACE 
TSFTR 

IOUT 

IMEAS 
JINC 
JIND 

ZERMAX 

Gimension 

Sca lar  

S c a l a r  
NCMAX 
NCMAX 
NMAX 
NCMAX~,  NOMAXC 
N C M A X ~ ,  NMAXC 
N M A X ~ ,  NOMAXC 
N M A X ~ ,  NMAXC 
N M A X ~ ,  NOMAXC 

N M A X ~  NCMAXC 
NCMAX~,  NCMAXC 
N C M A X ~ ,  NOMAXC 
NCMAX~,  NCMAXC 

Sca la r  

NMAXb, NMAXC 

Sca lar  

Sca la r  

D e f i n i t i o n   D e f a u l t   v a l u e  

Time s tep  0.05 sec 

Desired maximum number o f   t ime   s teps  
Open-loop  system s tep   inpu t   ampl i tude  vec tor  All e lements   a re   se t   to  1.0 

I n i t i a l - c o n d i t i o n   a m p l i t u d e   v e c t o r  All elements   a re   se t   to  1.0 
I n p u t l o u t p u t   s e l e c t i o n   m a t r i x  All elements   a re   se t   to  1 

Star t ing   f requency   fo r   f requency   responses  
Frequency-point  spacing 

= 1, c losed   l oop   on l y  
= 2, c r o s s   p l o t  open-  and closed-loop  responses; 

= 1, l i n e a r  Bode p l o t s ;  = 2, l o g  Bode p l o t s ;  
= 3, b o t h   l i n e a r  and l o g   p l o t s  

Desired number of   f requency  response  po ints  
Every ISPACE f requency   response  po in t   i s  1 i s t e d  
Time sca le   f ac to r ,   used   f o r   i nc reased   p rec i s ion  

I n d e x   f o r   s e l e c t i n g  component o f  y v e c t o r  

Index f o r   s e l e c t i n g  component o f  z vec tor  

Index f o r   s e l e c t i n g  component o f  w v e c t o r  
Index f o r   s e l e c t i n g  component o f  u v e c t o r  

10 t imes   va lue   o f   l a rges t   expec ted   t rans fe r  
f unc t i on   ze ro  

0.01 Hz 
0.02 Hz 

2 

3 

49 
1 

1.0 

1 

1 
1 
1 

100 rad/sec 

Functions  where  used 

j e r i e s  600 ( t ransient  responses);  
'unc t ions   601  to  604 

v 
Ser ies  500, frequency  responses 

It 

Ser ies  500 (frequency  responses) 
and se r ies  700 ( t r a n s f e r   f u n c t i o n s )  

I 
Ser ies  700 

aSee t a b l e  VI1 f o r   d e t a i l e d   d e s c r i p t i o n .  
 ROW s ize .  
CColumn s ize .  



When running  the  AESOP  program, it has been found 
helpful to have  available  a brief list of all possible 
functions.  This list is provided in tabie IV. Once  the user 
has  read  this  report  and is generally  familiar with what 
the  program  can do,  table IV can be  used  as a ready 
reference guide while running  AESOP.  More specific 
details  on  the  various  functions  are given here. 

Series  100 - Program Control 

Series  100 contains only two  functions:  one  for 
changing reference  parameter  values, and  the other to 
allow the user to change  datadefs in the  middle  of  a  run. 

101-Change reference  values by using NAMELIST 
REFS. -Table I11 describes various  parameters in 
NAMELIST  REFS  that  are used  in the  AESOP  program 
to determine  time  and  frequency  steps,  input  and  output 
indices,  etc.  The  table  also gives the  default values of 
these parameter values that  are initialized in the main 
AESOP  program.  Function 101 allows the user to 
change  any  or all of these parameters.  It  prompts  the user 
with the message 

ENTER  CHANGES  TO  NAMELIST REFS (TSFTR, 
DT,  FI,  DELF,  ZERMAX,  AMPSP,  AMPSR, 
AMPICX,  IF,  ISPACE,  IOUT, IMEAS,  JINC,  JIND, 
ITRMX,  NCURV, LINLOG, MSPY,  MSPYSP,  MSPU, 
MSROLY, MSROLX,  MICCLY, MICCLX, MICCLU, 
MICOLY,  MICOLX) 

after which the user can  enter  the desired parameter 
changes. An example  of  the use of  function 101 appears 
in appendix C, test case I, page 65. 

102 -PA USE to allow  user to change datadefs. - If the 
user requests  this  function,  the  program will display  the 
message 

YOU  MAY  NOW CHANGE YOUR DDEFS IF YOU 
WISH.  DON'T  FORGET TO CLOSE  AND  RELEASE 
THE  OLD ONES  FIRST 

The  program  then  effects  a  Fortran  PAUSE  and the 
keyboard  unlocks to allow the user to make the  appro- 
priate  changes.  This  function is useful,  for  example, 
when the user  wishes to read in NAMELIST's  MATDAT 
and  REFS  from  dataset BBB, where previously  similar 
data had been read  from  dataset AAA. At  the requested 
PAUSE, the user can  then  enter 

CLOSE AAA 
RELEASE FT33F001 

and  then 

DDEF FT33F001,VS,BBB 

and  then  type "GO" to  continue  execution. 
Subsequently, the user can  request  function 202,  which 
will read  in  the  desired data from  dataset BBB. 

Series 200-Data Input and Revision 

This series of  nine  functions is  used for  inputting basic 
problem-defining data  from  datasets  or  for  inputting 
changes to that  data. The changes are typed in  from  the 
user's  terminal. 

201  -Forming  matrices for test  case I. - Function 201 
is of  use mainly when executing test case I ,  which is 
presented in appendix C. Function 201 simply forms all 
matrices  and  defines all dimensions, all of which are 
included in  NAMELIST  MATDAT.  The specific 
matrices that this  function  forms  for  the test case are 
shown in table V. The  dimensions  for  this  problem are 
N=3,  NC=2,  NM=1,  NO=2, and ND=2. 

202 -Primary function for problem-defining data 
input. - Function 202  is the  one usually used for  reading 
in (from  a VS dataset)  the data  that  define  the user's 
problem.  The data must reside in the  dataset  in the 
following NAMELIST  form: 

&MATDAT  (data  for  variables in NAMELIST 

&END 
MATDAT - see table 11) 

&REFS (data for variables in NAMELIST  REFS - 

&END 
see table 11) 

Note that  data  for  the two NAMELIST's must be in  the 
order  shown.  It is not necessary to have any  of  the  REFS 
parameters  entered if the user  wishes to have AESOP use 
the  default values shown in table 111. However,  the  entry 
in the aforementioned  dataset must then  appear  as 

&REFS &END 

203,  204,  and 210- Functions  used for revising data 
that define the user'sproblem. -Functions 203,  204, and 
210 are useful when conducting design iterations, for 
filter design, regulator design, or plant  sensitivity  studies. 
Each  function allows various  parameter changes to be 
made via NAMELIST's  from  the user's terminal. (For 
NAMELIST  definitions, see table 11.) 

Function 203 is used to revise elements in the  control 
design performance  index weighting matrices QC, NN, 
and PCINV. NAMELIST  CONPAR is used for  this 
purpose.  Function 204  is used to revise elements  in  noise 
power spectral  density  matrices QQ and RRINV through 
NAMELIST  ESTPAR. These noise parameters,  of 
course,  strongly  influence the characteristics of the 
associated  Kalman  filter.  Function 210  is useful when 
changes  are to be made  in any of the variables  in 
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TABLE IV. - SUMMARY OF AESOP  FUNCTIONS 

Funct ion Desc r ip t i on  

:ompute 1 P l o t  I S to re  

Func t ion  I D e s c r i p t i o n  I Func t ion  D e s c r i p t i o n  

Program c o n t r o l  T rans ien t   func t ion   zeros  I 
Open-loop  system ana lys i s  Open-loop  system: 

702 
701 u t o  z 

703 
u t o  y 

704 
w t o  z 

705 O p t i m a l   c o n t r o l l e r  
w t o  y 

Func t ion   Descr ip t ion  

LQR, Kalman f i l t e r ,  and covariances 

Change reference  va lues 
Program  pause 

Eigenvalues 

C o n t r o l l a b i l i t y ,   o b s e r v a b i l i t y ,  
E igenvectors  and mode shapes 

and res idues  
Normal izat ion 
Unnormal izat ion 

401 

403 
402 

404 
405 

I I n p u t t i n g   o r   r e v i s i n g   m a t r i c e s  

M a t r i x   i n p u t :  
M a t r i c e s   f o r   t e s t   c a s e  
B a s i c   m a t r i x   d a t a   i n p u t  

Revis ing  matr ices:  
QC, NN, and PCINV ( f o r  LQR) 
QQ and RRINV ( f o r   f i l t e r )  
A, 6, C, DOUT, H,  CSP, QC, 

NN, PCINV, QQ, and RRINV 

Reading  s tored  matr ices:  
KC ( f rom LQR) 
KE ( f r o m   f i l t e r )  
SS ( f rom LQR) 
PP ( f r o m   f i l t e r )  
KFF 

201 
202 

203 
204 
210 

205 
206 
207 
208 
209 

Frequency  responses I 

Open loop: 
u t o  z 
u t o  y 
w t o  z 
w t o  y 

With  state  feedback: 
w t o  y 
w t o  u 

With  Kalman f i l t e r  feedback: 
w t o  z 

w t o  u 
w t o  y 

O p t i m a l   c o n t r o l l e r  

503 
506 
509 
512 

525 

502 
505 
508 
511 

514 
516 

518 

522 
520 

524 

501 
504 
507 
510 

513 
515 

517 

521 
519 

523 

- 
801 
508 
802 
805 
806 
807 
- 

809  Solve  Riccat i   equat ion 
816   S to re   so lu t i on   ma t r i x  SS/PP 
810  Store  ga in KC/KE 
813 Check p o s i t l v e - d e f i n i t e n e s s   o f  SS/PP 
814 Check s y m e t r y   o f  SS/PP 
815 Compute r e s i d u a l   e r r o r  

Funct ion I D e s c r i p t i o n  

Eigenvalues and e l yenvec to rs  

803  E-values o f  A - B*KC 
811  E-values o f  A - 6-KC - KE*H 
812  E-values o f  ATOT 
804  E-vectors o f  A - 6-KC 

~~ ~~~ ~ 

M a t r i x   f o r m a t i o n  

n - B-KC 
R - B.KC - KE*H 
"Tota l "   system  matr ices 

301 
302 
303 

Transient  response 

601 
602 
603 
604 

Covariances,  etc. Open-loop s tep 
Open-loop i n i t i a l   c o n d i t i o n  
Closed-loop LQR i n i t i a l   c o n d i t i o n  
Nonzero-set-point LQR s tep  

817  Covariances o f  LQR system 
818 
819 

Covariance  error  check 
Feedforward   ya in   ca lcu la t ion  (KFFJ 

820  Store KFF 

User-suppl ied  subrout ines 

901 UZR901 
902 UZR902 
903 UZR903 
904 UZR904 



TABLE V. - INPUT  MATRICES FOR THIRD-ORDER  TEST  CASE 

A =  

1 
2 
3 

B =  

1 
2 
3 

D =  

1 
2 
3 

C =  

1 
2 

H =  

1 

I n p u t   m a t r i x  

1 

-0.1000D-00 
0.0000 
0.0000 

1 

0.0000 
0.0000 

1.000 

1 

0.0000 
0.0000 

1.000 

1 

1 .ooo 
0.0000 

1 

1.000 

1 

D.0000 
3.0000 

2 

1.ooc 
0.0000 
-1.000 

2 

0.0000 

0.0000 
1.000 

2 

0.0000 
1,000 

0.0000 

2 

0.0000 
1.0000 

2 

- 

-~ 

I. 0000 

2 

I. 0000 
1.000 

3 

0.0000 
1.000 

-0.20000-0 

. .  

3 

I. 0000 
1.000 

3 

).OOOO 
- 

.~ . . .  ~ 

-~ 

NAMELIST  MATDAT, in particular,  problem  dimen- 
sions and matrices A, B, C, D, DOUT, H, and CSP. 
However, the noise  matrices and  the weighting matrices 
can be modified  here  also if so desired. 

205,  206,  207,  208,  and 209-Functions for reading 
gain  and  Riccati  solution  matrices. -AESOP contains 
three  functions (801, 809, and 819) that solve Riccati 
equations  and  associated  gain  matrices and five functions 
(802,808,810, 816, and 820) that  store  results  in  datasets. 
Functions 205 to 209 are used for  reading in datasets  that 
contain  gain or Riccati solution  matrices previously 
computed by function 801, 809, or 819. Function 205 
reads  control  gain  matrix KC from  dataset  CG$l ($1  is 
the  parameter in PROCDEF AESRUN). Function 206 
reads  Kalman  filter  gain  matrix KE from  dataset EG$l. 
Function 207 reads  control  Riccati  solution  matrix SS 
from  dataset SS$1. Function 208 reads  Kalman  filter 
Riccati solution  matrix PP from  dataset PP$I. Function 
209 reads  feedforward  gain  matrix KFF from  dataset 
FFG$l.  Note  that by using PAUSE function 102, the user 
can  appropriately  re-datadef  any  of the preceding 
datasets so as  to read  in the  data  from  the particular 
dataset  desired.  Refer to table I for definition  of  the  unit 
numbers  associated with these  five  datasets. 

Series 300 -Matrix Formation 

The  three  functions  in series 300 all take gain and open- 
loop plant  matrices and  form  various  matrices  related to 
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i CSP = 

1 
2 

QC = 

1 
2 
3 

NN = 

1 
2 
3 

QCINV = 

1 
2 

99 = 

1 
2 
3 

lRINV = 

1 

.. ~ . . 

.. . 

I n p u t   m a t r i x  

1 

1.000 
0.0000 

1 

0.0000 
500.0 

0.0000 

1 

40.00 
0.0000 

32.00 

1 

0,0000 
0.15630-01 

1 

0.0000 

0.0000 
0.0000 

1 

1.000 

" 

- 

- .. 

2 

0.0000 
0.0000 

2 

0.0000 

0.0000 
9.000 

2 

0.0000 

0.0000 
81.00 

2 

0.0000 
0.12350-02 

2 

0.0000 
2.000 

0.0000 

J 

3 

0.0000 
2.000 

3 

0.0000 
0.0000 
0.40000-07 

;..I 20.00 

closed-loop control system configurations.  Separate 
functions are assigned to forming these matrices because 
a  number of AESOP  functions  require  these  same 
matrices  as  input.  Table VI summarizes the  three 
functions  and  indicates  for which other  AESOP  function 
these  three  functions  are  prerequisites. Examples of using 
these  functions  are given in  appendix C;  for 301, pages 69 
and 79; for 302 and 303, page 70. 

Series 400 - Open-Loop System  Analysis 

This series of five functions is  used in  conducting  pre- 
design analyses  for  the  open-loop  plant or  for plant data 
normalization. 

401 - Open-loop  system eigenvalues. - Function 401 
simply computes the eigenvalues of  the A matrix.  The 
eigenvalues are  displayed  in  both  Cartesian (a *j@)  form 
and polar  (frequency and {) where the  frequency is in 
hertz and { is the damping ratio, { 4-cos(arctan I@~/CY). 
A negative 5' indicates  a  right-half-plane  eigenvalue  (or 
pair). An example  appears on page 68 of appendix C .  

402 - Open-loop  eigenvectors  and  mode 
shapes. -Function 402 computes and prints out  the 
modified  eigenvector  matrix for  the A matrix and also 
these  vectors  in  mode-shape  form.  Refer to  the section 
Theoretical  Background for a  description  of the modified 
eigenvector and mode-shape  format.  Note that  one must 
call  function 401 before  calling  function 402. Use of 
function 402 is also  shown on page  68  of  appendix C. 



:: Function 

1 

TABLE VI. - AESOP FUNCTIONS USED FOR MATRIX  FORMATION 

Matrix  formed I Dimension I Equation I Function where used 
AMBKC I NxN I AMBKC = A - B-KC 

513,515,603, 
604,803,819 

ABKCEH I NxN I ABKCEH = A - B-KC - KE-H 1 523,705,811 

-1 

DTOT = [-:-I, 2NxND 

2Nx2N 

CTOT = [C I -DOUT.KC], NOx2N 

HTOT = [H I 03, NMx2N 

KCTOT = [0 j -KC], NCx2N 

403 - Controllabili ty,   observabili ty,   and 
residues. - Prerequisites for function 403 are  functions 
401 and 402. Given the  open-loop system described by A, 
B, C, and H, function 403 computes  the  controls effec- 
tiveness matrix (T-' B) and  two system observability 
matrices (H T and H C). Also, this function  computes 
the residues for systems (A, B, C )  and (A, B, H). All 
outputs  are  generated in mode-shape format. See page 68 
of appendix  C  for an example of the use  of function 403. 

404- Normalization of system matrices. -Function 
404 allows the user to normalize all system matrices by 
using scaling factors  that  have  been prestored in a 
dataset.  The  program  prompts  the user to datadef to unit 
34 the dataset containing these (normalizing) factors.  The 
factors  are defined as 

System Vector of 
variable normalization 
(vector) factor 

yw SCYSP 

Size 

50 
5 
5 

50 
5 

The  program initializes all normalizing  factors to unity 
before  reading in  the  dataset.  The (VS) dataset  must 
contain  the  data in NAMELIST form, where the 
NAMELIST  name is NRMS. An example of a dataset's 
contents  might  be 

&NRMS SCX(l)=2., 3.,SCU(1)=42., SCU(3)= .22 
&END 

Here  only  the  normalizing  factors  for  the first and second 
state variables and  the first and  third  control variables are 
to be nonunity.  Matrices affected by normalization are 

(a) 517,519,521,812 

A, B, C, H, QQ, RRINV, D, DOUT, and CSP. 
Examples  of using function 404 and  companion function 
405 appear  on pages 77 and 79 of appendix  C. 

405- Unnormalization of matrices. - Function 405 is a 
companion to function 404 and allows resultant matrices 
KC, KE, KFF, and PP to be  transformed back to 
dimensional  form if desired. If  prior normalization of 
input matrices is performed (via 404) in the same  run  of 
AESOP, no new scaling factors need be  read  in. 
However, function 405 automatically  prompts  the user 
(as  is done in function 404) for  the dataset containing  the 
normalizing  factors if not previously read  in. 

Series 500 -Frequency Responses and Bode Plots; and 
Series 700 -Transfer Functions 

Functions in these two series (500 and 700) are closely 
related in that all allow  the user to perform  frequency 
domain inputloutput calculations for both  open-  and 
closed-loop system configurations. A general description 
of these calculations is provided in the section Theoretical 
Background  under the heading Transfer Functions  and 
Frequency  Response Calculations. All functions in  series 
500 and 700 are summarized in table VII. Four system 
configurations  are  considered here: 

Open loop 
State-variable  feedback 
Kalman filter  feedback 
Optimal  controller only i Figure 

8 
9 

10 
11 

The figures describing the  configurations  appear in the 
section Theoretical Background. As noted in table VII, 
the user specifies the component  of the  inpu?/output pair 
of interest by selecting values for indices JINC,  JIND, 
IMEAS, or  IOUT, which are all members of NAMELIST 
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TABLE VII. - AESOP FUNCTIONS FOR  COMPUTING  TRANSFER  FUNCTIONS AND FREQUENCY  RESPONSES 

Sys  tem 
c o n f i g u r a t i o n  

Open l o o p  

S ta te -va r iab le   f eedback  

Kalman f i l t e r  feedback 
S ta te -va r iab le   f eedback  

Kalman f i l t e r  feedback 
Kalman f i l t e r  feedback 
O p t i m a l   c o n t r o l l e r   o n l y  

" .  " 

I n p u t  
v a r i a b l e  

~ 

" 

Output  
v a r i a b l e  

y IOUT 
z IMEAS 

y IOUT 
z IMEAS 

y IOUT 

z IMEAS 
u JINC 

y IOUT 
u JINC 
u JINC 

AESOP program  funct ion  numbers 
- - . " . . " - 

T r a n s f e r   f u n c t i o n s  I . .  

Frequency  responses 
"" ~ 

"- . 

Numerator 
zeros and g a i n  

70 1 
702 
703 
704 "_ 
"_ 
_" 
_" 
"_ 
70 5 

- .. 

Poles 

401 

80 3 
803 

Magnitude, 
and c o e f f i c  

501 
504 

510 
507 

513 
515 

812 I 517 

phase 
: i e n t s g  

" 

'12 I 521 
519 

812 

. - -~ 

Response 
p l o t s  

505 
502 

508 
511 

C514 
516 

C518 
c520 

522 
524 

_ _ _ _  

.". 

Store   magn i tude 
and  phase 

503 
506 
509 
512 

.~ ~ 

-" 
-" 
-" 
-" 

a I n d i c e s   a r e   i n c l u d e d   i n  NAMELIST REFS ( t a b l e  111). I n d e x   v a l u e s   d e t e r m i n e   v e c t o r   i n p u t / o u t p u t   p a i r   f o r   w h i c h   t h e  
t r a n s f e r   f u n c t i o n   o r   f r e q u e n c y   r e s p o n s e  will be  computed. 

-" 
525 

bComputes ( 1 )   c o e f f i c i e n t s . o f   t h e   t r a n s f e r   f u n c t i o n   n u m e r a t o r  and  denominator   po lynomia ls   and  (2)   f requency  response 
magnitudes and phase  angles f o r   i n i t i a l   f r e q u e n c y   F I ( H z ) ,   f r e q u e n c y   s p a c i n g  DELF(Hz),  number o f   p o i n t s   I F ( 2 1 0 0 0 ) ,   a n d  
a t i m e   s c a l e   f a c t o r  TSFTR. 

the  open-loop  response  used i s   t h e   l a s t  one c a l c u l a t e d .  
C I f  NCURV = 2, t h i s   c l o s e d - l o o p   r e s p o n s e  will b e   c r o s s p l o t t e d   w i t h   i t s   c o r r e s p o n d i n g   o p e n - l o o p   r e s p o n s e .   N o t e   t h a t  

REFS. It can be  seen that  transfer  function  numerator 
and  denominator  polynomial  coefficients  (eq. (42)), 
frequency  response  calculations,  storing of frequency 
responses, and Bode plotting  are  available  for all four 
system configurations. Specific function  numbers allow 
the user to choose between control u or disturbance w 
inputs and between noisy z or noise-free y outputs.  One 
exception is for  the  optimal-controller-only  configura- 
tion, where the only input is measurement  vector z and 
the  output is the  control  vector u. Examples of  the use of 
500 series functions  appear  on pages 72 to 74 of  appendix 
C, including  plotted output. Transfer  function zeroes and 
gain information can be obtained  only  for  the  open-loop 
plant  and  for  optimal  controller  configurations.  How- 
ever, trans€er  function poles can be computed  for all 
configurations.  Note  that these are all eigenvalue 
computations  and  are  included  in series 400 or series 800. 
Examples of the use of  functions 701 to 705 are  shown on 
pages  76 and 77  of appendix C. 

Frequency  response data (frequency,  amplitude, and 
phase  angle), which are stored on datasets by functions 
503, 506 ,  509,  512, and 525, are all  written by using a 
Fortran  WRITE  statement  of  the  form 

WRITE (i, b)  (FREQ(I),AMP(I),  PHASE(I),I = 1,IF) 

Here, i is an  appropriate  unit  number, IF is the number 
of  response data points,  and FORMAT statement b i s  
FORMAT 2 (lOG12.5). An appropriately  formatted 
READ statement would be used if one wished to use any 
of  these  computed  frequency  responses  in a separate 
program. 
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Series 600 - Transient  Responses 

Transient  responses -for either  step or initial 
condition  inputs -are computed by the  four  AESOP 
functions  in  this series. Pertinent  information  required to 
use these functions is shown in table  VIII.  Functions 601 
and 602 are  for  the  open-loop system configuration and 
603 and 604, for  linear  quadratic  regulators.  Note that  to 
use a  function,  the user should specify 

(1) Input  amplitude  (or  amplitudes),  AMP- - - 

(2) Desired time  step, DT 
(3) The  number  of  time  points to be computed, 

ITRMX 5 lo00 
(4) Desired input/output response  pairs for which 

responses  are to be calculated, MS - - - or  MIC - - - 
All of  these  parameters  are in NAMELIST REFS and 

are set to default values in the main  AESOP  program (see 
table I11 for  default values). The  transient  response  plots 
that  are generated  by  these  functions will  be generated on 
the  particular  graphics device that  the user has  previously 
defined.  Examples  of  these  plots and  the use of  functions 
601 to 604 appear  in  test  case  I in appendix C. 

vectors 

Series 800 - LQR and  Filter  Design 

Functions  in series 800 are  for (1) solving the Riccati 
equations  associated with the  LQR or Kalman filter 
design problems or (2) related  gain,  covariance, or 
eigenvalue/eigenvector  calculations. 

Functions for solving  Riccati equations. - Table IX 
lists the numbers of the functions  in the 800 series that 
deal  directly with LQR  or Kalman  fiiter design. Three 



TABLE VIII. - AESOP  FUNCTIONS  FOR  COMPUTING  TRANSIENT  RESPONSES 
Function Type of  transient 

601 
open-loop  system 
Step  response of 

602 
response of open- 
Initial-condition 

1 oop system 

603 Initial-condition 
response of linear 
quadratic  regulator 

604 
nonzero-set-point 
Step  response of 

regulator 

Vector  containing 
input  amplitudes 

AMPSR 

AMP I CX 

AMPICX 

AMPSP 

output 
variables 

Y 
X 

Y 

X 

Y 
X 
U 

Y ys P 
U 

select  matrixa 
Inputloutput 

MSROLY 
MSROLX 

MICOLY 

MICOLX 

MICCLY 

MICCLU 
MICCLX 

MSPY 
MSPYSP 

MSPU 

aUse of inputloutput  select  matrices: 

M XXXX  (input  index,  output  index) = 1, if response  is to be  calculated  and  plotted 

That is, for function 601, if response  of y(3) to u(2) is  desired,  set  MSROLY(2,3) = 1 
or,  for  function  602,  if  response  of y(1) to an  initial condition on  x(2)  is desired, 

faulted to all  ones. They  can be  changed  via  NAMELIST  REFS.  All  responses  are for 
set  MICOLY(2,l) = 1. All amplitude  vectors and  inputloutput  select  matrices  are  de- 

only  one  input or initial-condition  component  applied.  Default for time  step DT is 
0.01  and that for time  points  ITRMX  is 100. They  can be  changed  via  NAMELIST  REFS. 

0, otherwise 

TABLE IX. - RICCATI  EQUATION  SOLUTION 
Task 

Solve  matrix  Riccati  equation: 
Number  of  function 
Name  of  solution  matrix 
Name of gain  matrix 

Store  Riccati  results in dataset: 
Function  for  storing  solution matrix 
Function  for  storing  gain  matrix 

Riccati  equation  accuracy  checks 
performed  on  solution  matrix: 

Symmetry 
Positive-definiteness 

Residual  error  matrix 

types of functions are provided: (1) those  for solving 
Riccati equations, (2) those for storing Riccati equation 
results in datasets for  future use, and (3) those  for 
checking the accuracy of Riccati solutions. Companion 
functions are provided in  series  200 for subsequently 
reading in the matrices computed and  stored by functions 
in the 800  series. Examples  of  the use of functions 
involved  with the  LQR  problem (801 to 808) are given  in 
appendix C, pages 68 to 70. Examples  of  Kalman filter 
design calculations (functions 809 to 816) appear  on 
pages  70 to 72  of appendix  C. 

To read Riccati or gain matrices from  datasets  into 
another  program (e.g., into a program that implements 
an LQR  control law), the user must  know  the correct 
Fortran  READ statements to use. The  appropriate 
(unformatted)  READ statements are as follows: 

1 LQR  design  Kalman filter 
problem  design  problem 

Function 

BO1 
ss 
KC 

809 
PP 
KE 

1 

808 
810 802 
816 

806 
805 813 

814 
807 815 

(1) For  reading the  control Riccati solution (stored in 
dataset  SS$l): 

READ (i)((SS(I,J),I = 1 ,N),J = 1  ,N) 

(2) For  reading  the  Kalman filter Riccati solution 
(stored in dataset  PP$l): 

READ (i)((PP(I,J),I=  l,N),J=  l,N) 

(3) For  reading the LQR gains (stored in dataset 
CG$l): 

READ (i)((KC(I,J),I = l,NC),J = 1,N) 

(4) For  reading the Kalman filter gains (stored in 
dataset EG$l): 
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READ (i)((KE(I, J),I = 1 ,N), J = 1  ,NM) 

(5 )  For  reading  the  feedforward gains (stored in 
dataset FFG$I): 

READ  (i)((KFF(I,J),I=  l,NC),J = 1,NC) 

It is assumed  that the user datadefs unit “i” to the 
appropriate  dataset. 

Functions f o r  eigenvalue/eigenvector  compu- 
tation. -Table X lists the functions that  compute eigen- 
values and eigenvectors associated with either regulator 
or filter designs. The eigenvalues and eigenvectors of the 
matrix A - B-KC are those of the linear regulator.  The 
eigenvalues of matrix A - B.KC - KE-H are  those of the 
optimal controller (depicted in fig. 11). The eigenvalues 
of  matrix ATOT are those of A -B*KC plus those of 
A - KEmH, the  latter being the Kalman filter eigenvalues. 

TABLE X. - EIGENVALUE AND EIGENVECTOR 

COMPUTATIONS I N   S E R I E S  800 

i M a t r i x  

I “‘803 

. .  I 

a M a t r i x  de f ined i n  t a b l e  VI. 

817- Covariance  matrices for system controlled by 
linear  stochastic  regulator. -Function 817 implements 
the solution to the  state  covariance  matrix  (Lyapunov) 
equation given  by equation (32) plus associated matrix 
equations (33),  (34), and (35). The  latter  equations 
compute control, measurement,  and output covariance 
matrices. Normally,  function 817  is  called after  com- 
puting  LQR gain matrix KC and  Kalman filter gain 
matrix KE. However,  one  or  both  of these two matrices 
may  be zero when function 817  is called. The resultant 
state  covariance  matrix XX will then  correspond to  the 
meaningful system configurations as shown in the follow- 
ing table. An  example of  the use of  function 81 7  appears 
on page  72 of  appendix  C. 

LQR gain 
matrix, 
KC 

fo 
=O 
fo 

=O 

~ 

Kalman gain 
matrix, 

KE 

fo 
= O  
=O 

fo 

_ _ _ _ _  

System configuration for which Figure 
XX is covariance  matrix 

~ 

Linear  stochastic  regulator 
Open-loop system  with noise  input 

I 

9 State  feedback system with 
3 

Open-loop system  with Kalman 6 
noise  input 

filter _ _ ~  

818- Covariance  matrix  error  check. -Function 818 
may  be called after function number 817 to compute  an 
estimate of the  error incurred in computing  the  state 
covariance matrix. An  example  of its use appears  on page 
72  of appendix  C. 

819- Feedforward  gain  matrix for nonzero-set-point 
regulator. - Function 819 computes  feedforward gain 
matrix KFF, which is part of the nonzero-set-point 
regulator. Matrix KFF is  given  by 

KFF = [ - CSP(A - B*KC)- ’ B] - ’ 
The  matrix KFF is needed  when computing the closed- 
loop system step responses with function 604. Functions 
819 and 820 are  demonstrated in test case I, appendix C, 
on page  72. 

820-Store feedforward gain matrix. -Function 820 
stores KFF in a dataset by  using the following un- 
formatted  WRITE statement: 

WRITE(iii)((KFF(I, J),I = 1  ,NC), J = 1  ,NC) 

The user can  read these data  into  another  program by 
using a  matching Fortran READ statement. 

Series 900 - User-Supplied Subroutines 

A series of  four function numbers  have been set aside 
for use as user-defined subroutines.  These  subroutines 
are called  UZR901,  UZR902,  UZR903, and UZR904. 
Thus users  may write their own special-purpose sub- 
routines by  using any  of the above as subroutine  names. 
Linkage between the  subroutine  and  the  main  AESOP 
program would  be achieved by using any  of  the 
COMMON’S used  in the  AESOP  program. Users  need 
not  recompile  the  AESOP  subroutine  containing  CALLS 
to the  four user-supplied subroutines, but need only 
compile their subroutines  into  a library that has  higher 
priority in the  JOBLIB  chain  than  the  “standard” 
AESOP  program  library. 

Concluding Remarks 
The  program described in this report was not  meant to 

be a static entity but  rather was envisioned as  a basic 
structure to which can  be  added new and useful system 
design functions as the need arises. Some  functions 
presently contemplated for  future inclusion are discrete 
LQR and Kalman filter gain calculations, time  responses 
for Kalman filters to noise signal inputs, linear model- 
order  reduction  procedures, LQR or Kalman filter eigen- 
value sensitivity calculations, transient responses  of 



discrete  LQR or Kalman filters, and multivariable  fre- a CRT terminal  screen.  The  present  program  structure 
quency  domain  control design algorithms. has  sufficient flexibility to accommodate  these types of 

Modifications  are also envisioned that  could  improve additions  without  compromising  present  interactive 
program-user  interfacing.  One would be to replace the  capability. 
present function-number-input system  with a set of 
mnemonics (i.e.,  the user would enter  LQR  instead of 801 
when requesting  an LQR problem  solution,  etc.). Lewis Research Center 
Another  addition would  be to allow the user to use a light National  Aeronautics  and  Space  Administration 
pen to select AESOP functions  from  a menu displayed on Cleveland,  Ohio,  June 14, 1983 
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Appendix A 
Symbols 

Dimensions are given for all vectors, matrices, and 
higher dimensional arrays. Where dimensions are not 
given, the variable is a scalar quantity. 

Variable Dimension Description 

A N x N  system matrix 
A* n x n  matrix whose eigenvalues 

A n x n  general matrix 

are transfer  function 
zeroes 

ABKCEH N x N matrix A - B-KC - KE-H 
AMBKC N x N  matrix A - B.KC 
AMPICX N vector of initial-condition 

AMPSP 

AMPSR 

ATOT 

ak 

B 
B 
- 

B 
bk 

C 
c 
CSP 
CSP 
CTOT 

- 

D 
D 
DELF 

DOUT 
DT 

30 

amplitudes 

amplitudes for closed-loop 
system 

amplitudes  for  open-loop 
system 

NTOT X NTOT system  matrix for combined 
regulator-Kalman filter 
system 

NC vector of input  step 

NC vector of input  step 

coefficient of transfer 

N x N C  
N x N C  
n x n c  

N O x N  
no x n  
N C x N  
N C x N  
NO x NTOT 

no x nc 
N x N D  

NO x NC 

function  numerator 
polynomial 

control  input  matrix 
controllability matrix 
general matrix 
coefficient of transfer 
function  denominator 
polynomial 

output matrix 
general matrix 
set-point output matrix 
normalized CSP matrix 
output matrix for combined 
regulator-Kalman filter 
system 

general matrix 
disturbance input matrix 
spacing between frequency 
points 

feedforward  matrix 
time  step 

NTOT x ND 

N 

N x N  
NM x NC 

NM x NC 

N M x N  
N M x N  
NM x NTOT 

disturbance  input  matrix 
for combined regulator- 
Kalman filter system 

Kalman filter estimation 
error vector 

error  matrix (X - X) 
selection matrix 
initial frequency 
transfer  function  matrix 
transfer  function 
measurement matrix 
observability matrix 
measurement matrix for 
combined regulator- 
Kalman filter  system 

I N x N  identity matrix 
IF integer, number of desired 

frequency response points 
IMEAS integer, index of meas- 

urement 
IOUT integer, index of output 
ISPACE  integer,  controls frequency 

of frequency response 
Drintouts 

ITRMX 

J 
JINC 
JIND 

Kij 
KC 
KCTOT 

KE 
K I T  

k* 
LINLOG 

P 

integer, number of desired 

performance index 
integer, index of control 
integer, index of distur- 

transfer  function gain 

time response points 

bance 

N C x N  control gain matrix 
NC x NTOT control gain matrix for 

combined regulator- 
Kalrnan filter system 

N x N M  Kalman filter gain matrix 
NC x NC feedforward  gain  matrix for 

nonzero-set-point 
regulator 

feedback gain term 
integer, indicates whether 
frequency response plots 
are  to be  linear,  log, or 
both 

matrix dimension 



I 

MICCLU N x NC 

MICCLX N x N 

MICCLY N x NO 

MICOLX N x N 

MICOLY N x NO 

MSPU NC x NC 

MSPY NC x NO 

MSPYSP NC x NC 

MSROLX NC x N 

MSROLY NC x NO 

M N x P  

N 
NC 
NCURV 

integer, input/output, 
closed-loop,  initial- 
condition  response 
selection matrix for 
controls;  state  feedback 

integer, input/output, 
closed-loop,  initial- 
condition  response 
selection matrix for 
states;  state  feedback 

integer, input/output, 
closed-loop,  initial- 
condition  response 
selection matrix  for 
outputs;  state  feedback 

integer, input/output, 
open-loop,  initial- 
condition  response 
selection matrix  for 
states 

integer, input/output, 
open-loop,  initial- 
condition  response 
selection matrix  for 
outputs 

integer, input/output, 
closed-loop,  step  response 
selection matrix  for 
controls;  state  feedback 

integer, input/output, 
closed-loop,  step  response 
selection matrix  for out- 
puts;  state  feedback 

integer, input/output, 
closed-loop,  step  response 
selection matrix  for  set- 
point outputs;  state 
feedback 

integer, input/output, 
open-loop,  step  response 
selection matrix for states 

integer, inputloutput, 
open-loop,  step  response 
selection  matrix for 
outputs 

QC matrix 
matrix,  general  factor of 

integer,  number  of  states 
integer, number of controls 
integer,  controls  cross 
plotting  of  frequency 
responses 

ND 

NM 

NMAX 

NN 

NO 
NTOT 
n 

nc 

no 

PCINV 

PP 

Pk - 
Q 

QC 
QQ 

R 
RRINV 

9 

scu 

SCX 

SCY 

SCYSP 

scz 

ss 

S 

N x N C  

NC x NC 

N x N  

Px P 

N x N  
N x N  

N M x N C  

N x N  
NM x NM 

NC 

N 

NO 

NC 

NM 

N x N  

integer,  number of 

integer,  number  of 

integer,  maximum  number 

state-control weighting 

integer,  number of outputs 
integer, 2 X N 
number of states for general 
dynamic system 

number of inputs  for 
general  dynamic system 

number  of  outputs  for 
general  dynamic system 

inverse  of control weighting 
matrix 

Kalman  filter  error 
covariance  matrix 

transfer  function pole 
symmetric, positivedefinite 

state weighting matrix 
power spectral  density 

disturbances 

measurements 

of states 

matrix 

matrix 

matrix of plant 
disturbance 

function  matrix G (s) 
residue  matrix of transfer 

residual  matrix 
inverse of power spectral 
density  matrix of 
measurement noise 

jth residue  of  transfer 
function g (s) 

vector  of  normalization 
factors  for  controls 

vector  of  normalization 
factors  for  states 

vector of normalization 
factors  for  outputs 

vector  of  normalization 
factors  for  set-point 
outputs 

vector  of  normalization 
factors  for  measurements 

Riccati solution  matrix for 
linear  quadratic  regulator 

Laplace  variable 
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.... . -  "". .- . . - ." . .. ._ 

T 

TSFTR 
t 
ti, ti + 1 
uu 
U 

V 

W 
W 

X 
X 
xx 
- 

X 

X 
" 

a 
YY 
Y 

YSP 

YSPd 

ZERMAX 

zz 

Z 

Z1 

N x N  

N 
NC x NC 
NC 
NM 
N x N  
ND 
N x N  
N x N  
N x N  
N 
N 
N 
NO x NO 
NO 
NC 
NC 

NM x NM 

NM 
NM 

modified eigenvector 

time scale factor 
time 
modified eigenvectors 
control covariance  matrix 
control vector 
measurement noise vector 
general matrix 
disturbance vector 
general matrix 
computed  value of matrix X 
state covariance  matrix 
state vector 
modal state vector 
estimated state vector 
output covariance  matrix 
output vector 
set-point  vector 
desired  set-point  vector 
maximum  expected  value of 

transfer function zeroes 
measurement  covariance 
matrix 

matrix 

measurement vector 
noise-free component  of 
vector z 

NM 2 

zk 

a 
P 

r N x N C  

Y N 
6 N 

6(7) 
r 
rl N 
A N x N  

Xi, hi + 1 

ip N x N  

Superscripts: 

T 
- 1  

Operators: 

7 

E (  1 

estimated value of z 
transfer function 
numerator zero 

real part of  eigenvalue 
imaginary  part  of 

forced-response  matrix  for 

real part of eigenvector 
imaginary  part of 
eigenvector 

unit impulse function 
damping  ratio 
eigenvector 
block  diagonal form of A 

complex eigenvalue pair 
time 
state-transition  matrix 

eigenvalue 

discrete system 

matrix 

matrix  transpose 
matrix inverse 

expected  value of 
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Appendix B 
Subroutine  Descriptions 

This  appendix describes the AESOP main  program  and 
all associated subroutines. A short description of  each 
subroutine is given, including what  subroutines  may call 
it,  and what  subroutines it calls. Where a subroutine  has 
a  parameter list, all variables in that list are defined. 

A tape of  the AESOP program  documented in this 
report is available from  COSMIC.  That version of 
AESOP has been  sized to accommodate  systems  having 
the following dimensions: 

N s 5 0  
N M s 5  
N C 1 5  
N D r l 5  
NO 150  

AESOP 

If these dimensions are greater than  or  equal  to  the 
corresponding  dimensions  of the user’s problem,  the user 
need make  no changes to  the main AESOP program 
(assuming that  the  program will fit on  the user’s 
computer).  However,  the user may wish to resize the 
program, either to accommodate  problems with larger 
dimensions or  to reduce  storage  requirements in order to 
allow  the  program to fit on  a smaller computer.  As 
currently dimensioned, AESOP requires approximately 
300 0oO bytes for all Fortran source  codes and  about 
1 700 OOO bytes for variable storage (the variables in 
COMMON’s appearing in the  main  program). To change 
program  dimensions,  array  dimensions  appearing in 11 
labeled  COMMON’s  must  be  changed.  These 
COMMON’s appear  only in the  main  program and the 
nine main  subroutines (AESlOO to AES900). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AESOP I S  THE MAIN  ROUTINE. AESOP CALLS  SUBROUTINES  AES100, 
AES200,  AES300,  AES400, AESSOO, AES600,  AES700,  AES800, 
AES900, AND THE PLOTTING SUBROUTINES. 
AESOP I S  NOT CALLED BY ANY SUBROUTINES. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  AESlOO  (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  AESlOO  CONTAINS THOSE FUNCTIONS  WHICH PERFORM PROGRAM 
CONTROL. AESlDO  CALLS  SUBROUTINE PREREQ. 
AESlOO I S  CALLED  BY  MAIN PROGRAM  AESOP. 

INPUTS : 

I F N  VECTOR OF  FUNCTION NUMBERS  TO BE DONE (1000) 
IFUNC  FUNCTION NUMBER 
MZ  WHICH  FUNCTION I S  TO BE DONE 
IPRT  PRINT  OPTION: 1, STANDARD PRINT;  

WHEN LOGICAL  MATRIX OF PREREQUISITES (450,50) 
2, EXTENDED PRINT 

OUTPUTS : 

IAND  DECISION  VARIABLE:  
8 ,  PREREQUISITES HAVE  BEEN DONE; 
1, PREREQUISITES HAVE NOT  BEEN DONE 

33 



SUBROUTINE  AESLOO (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  AES200  CONTAINS THOSE FUNCTIONS  WHICH INPUT DATA. 
AESPOO CALLS  SUBROUTINES MATCHG, MATIN,  MATPKI, MA'TRD, AND PREREQ. 
AES200 I S  CALLED  BY  MAIN PROGRAM  AESOP. 

INPUTS: 

I F N  VECTOR  OF FUNCTION NUMBERS  TO BE DONE 11000) 
IFUNC  FUNCTION NUMBER 
MZ  WHICH FUNCTION IS TO BE DONE 
IPKT  PRINT  OPTION: 1. STANDARD PRINT: 

2; EXTENDED PRINT-  
WHEN LOGICAL  MATRIX OF PREREQUISITES (450,50) 

OUTPUTS : 

IAND  DECISION  VARIABLE: 
0, PREREQUISITES HAVE BEEN DONE; 
1, PREREQUISITES HAVE NOT BEEN DONE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  AES300  (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

. ................................................................. 
SUBROUTINE  AES300  CONTAINS THOSE FUNCTIONS  WHICH FORM MATRICES. 
AES300  CALLS  SUBROUTINES MATPRT AND PREREQ. 
AES300 I S  CALLED BY MAIN PROGRAM  AESOP. 

INPUTS: 

I F N  VECTOR OF FUNCTION NUMBERS  TO BE DONE (1000) 
IFUNC  FUNCTION NUMBER 
MZ  WHICH FUNCTION I S  TO BE DONE 
IPRT  PRINT  OPTION: 1, STANDARD PRINT;  

WHEN LOGICAL  MATRIX  OF  PREREQUISITES  (450,50) 
2, EXTENDED PRINT 

OUTPUTS : 

IAND  DECISION  VARIABLE: 
0, PREREQUISITES HAVE BEEN DONE; 
1, PREREQUISITES HAVE  NOT  BEEN DONE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  AES400  (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

. ................................................................. 
SUBROUTINE  AES400  CONTAINS THOSE FUNCTIONS  WHICH  CALCULATE 
CONTROLLABILITY,  OBSERVABILITY,  EIGENVALUES,  EIGENVECTORS,  AND 

AES400  CALLS  SUBROUTINES CTBL, EGVCTR, EIGEN, MATPRT, MODSHP, 
NRML, OBSBL, PREREQ, RESI, AND UNRML. 
AES400 I S  CALLED  BY  MAIN PROGRAM AESOP. 

I NPUTS : 

RESIDUES, AND WHICH PERFORM NORMALIZATION AND UN-NORMALIZATION. 

I F N  VECTOR OF FUNCTION NUMBERS  TO BE DONE (1000) 
IFUNC  FUNCTION NUMBER 
MZ  WHICH  FUNCTION I S  TO BE DONE 
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IPRT  PRINT  OPTION: 1, STANDARD PRINT; 

WHEN LOGICAL  MATRIX OF PREREQUISITES (450,50) 
2, EXTENDED P R I N T  

OUTPUTS : 

IAND  DECISION  VARIABLE: 
0, PREREQUISITES HAVE  BEEN DONE; 
1, PREREQUISITES HAVE  NOT  BEEN DONE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  AES500  (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  AES500  CONTAINS THOSE FUNCTIONS WHICH CALCULATE 
FREQUENCY  RESPONSE  AND BODE PLOTS. 
AESSOO CALLS  SUBROUTINES BODE, FRSPNS, AND PREREQ. 
AES500 I S  CALLED BY MAIN PROGRAM  AESOP. 

INPUTS: 

I F N  VECTOR  OF FUNCTION NUMBERS  TO BE DONE (1000) 
IFUNC  FUNCTION NUMBER 
MZ WHICH FUNCTION I S  TO BE DONE 
IPRT  PRINT  OPTION: 1 ,  STANDARD PRINT; 

WHEN LOGICAL  MATRIX OF PREREQUISITES  (450,50) 
2, EXTENDED PRINT 

OUTPUTS : 

IAND  DECISION  VARIABLE: 
0, PREREQUISITES HAVE  BEEN DONE; 
1 ,  PREREQUISITES HAVE  NOT  BEEN DONE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  AES600  (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  AES600  CONTAINS THOSE FUNCTIONS WHICH CALCULATE 
TIME RESPONSES AND THE  ASSOCIATED  PLOTS. 
AES600  CALLS  SUBROUTINES DSCRT. ICRSP. MATPRT. PREREO.  AND STP. 
AES600 I S  CALLED BY MAIN  PROGRh AESOP. 

INPUTS: 

~~ .* 

I F N  VECTOR OF FUNCTION NUMBERS TO BE DONE (1000) 
IFUNC  FUNCTION NUMBER 
MZ WHICH FUNCTION I S  TO BE DONE 
I P R T   P R I N T  OPTION: 1. STANDARD PRINT: 

WHEN LOGICAL  MATRIX OF PREREQUISITES (450,50) 
2; EXTENDED PRINT- 

OUTPUTS : 

IAND  DECISION  VARIABLE:  
0, PREREQUISITES HAVE  BEEN DONE; 
1 ,  PREREQUISITES HAVE  NOT  BEEN DONE 
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SUBROUTINE  AES700  (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  AES700  CONTAINS THOSE FUNCTIONS WHICH  CALCULATE 
ZEROES  AND GAINS. 
AES700  CALLS  SUBROUTINES  GAIN, MATPRT, PREREQ,  AND  ZEROES. 
AES700 I S  CALLED BY MAIN PROGRAM AESOP. 

INPUTS : 

I F N  VECTOR OF FUNCTION NUMBERS TO BE DONE (1000) 
IFUNC  FUNCTION NUMBER 
MZ WHICH FUNCTION I S  TO BE DONE 
IPRT  PRINT  OPTION: 1, STANDARD PRINT;  

WHEN LOGICAL  MATRIX  OF  PREREQUISITES (450,50) 
2, EXTENDED PRINT 

OUTPUTS : 

IAND  DECISION  VARIABLE: 
0, PREREQUISITES HAVE  BEEN DONE; 
1, PREREQUISITES HAVE NOT BEEN DONE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  AES800  (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  AES800  CONTAINS THOSE FUNCTIONS WHICH  CALCULATE 
EIGENVALUES AND EIGENVECTORS OF  CONTROLS OR FILTERS. AND THE 
FEED FORWARD, RICCATI, AND COVARIANCE ~EQUATIONS. 
AES800  CALLS  SUBROUTINES CONTRL,  COVAR,  EGVCTR, EIGEN, ESTMAT, 
LYPCK,  MATPRT. MODSHP, MXINV. PREREO.  AND RICCHK 
AES800 I S  CALLED  BY  MAIN PROGRAM  AESOP. 

INPUTS: 

I F N  VECTOR  OF FUNCTION NUMBERS  TO BE DONE (1000) 
IFUNC  FUNCTION NUMBER 
MZ  WHICH FUNCTION I S  TO BE DONE 
I P R T   P R I N T  OPTION: 1, STANDARD PRINT;  

WHEN LOGICAL  MATRIX OF PREREQUISITES (450,50) 
2, EXTENDED P R I N T  

OUTPUTS : 

IAND  DECISION  VARIABLE: 
0, PREREQUISITES HAVE  BEEN DONE; 
1, PREREQUISITES HAVE  NOT  BEEN DONE 

.................................................................. 

SUBROUTINE  AES900  (IFN,  IFUNC,  IAND, MZ, IPRT, WHEN) 

.................................................................. 
SUBROUTINE  AES900  CONTAINS THOSE FUNCTIONS WHICH  ARE SUPPLIED 
BY  THE USER. AES900 DOES  NOT CALL ANY SUBROUTINES. 
AES900 I S  CALLED  BY  MAIN PROGRAM  AESOP. 

INPUTS: 

I F N  VECTOR OF FUNCTION NUMBERS  TO BE DONE (1000) 
IFUNC  FUNCTION NUMBER 
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MZ WHICH FUNCTION I S  TO BE DONE 
IPRT  PRINT OPTION: 1. STANDARD PRINT:  

WHEN LOGICAL  MATRIX OF PREREQUISITES (450,50) 
2; EXTENDED PRINT- 

OUTPUTS : 

IAN0  DECISION  VARIABLE:  
0, PREREQUISITES HAVE  BEEN DONE; 
1, PREREQUISITES HAVE  NOT  BEEN DONE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE ARRAY (IOPT,I,J,NROW,A) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE ARRAY  CONVERTS  AN  ARRAY  FROM  VECTOR  TO MATRIX OR THE 
REVERSE. ARRAY  DOES  NOT CALL ANY SUBROUTINES. ARRAY IS CALLED  BY 
SUBROUTINES COVAR,  EGVCTR, EIGEN, LYPCK, RICSS, AND  ZEROES. 

INPUTS: 

IOPT  OPTION  INDICATING TYPE  OF  CONVERSION 
1 - FROM  VECTOR  TO MATRIX 
2 - FROM MATRIX TO  VECTOR 

I NUMBER OF ROWS I N  ACTUAL  MATRIX 
J 
NROW NUMBER  OF ROWS SPECIFIED FOR THE MATRIX A I N  

NUMBER  OF  COLUMNS I N  ACTUAL  MATRIX 

DIMENSION STATEMENT 

I F  MODE = 2, CONTAINS A MATRIX OF  N  BY J S I Z E .  
A I F  MODE = 1, CONTAINS A VECTOR OF I *J  LENGTH. 

OUTPUTS : 

A I F  MODE = 1, CONTAINS A MATRIX OF  N BY J SIZE.  
I F  MODE = 2, CONTAINS A VECTOR  OF I *J  LENGTH. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

BLOCK  DATA 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE  BLOCK DATA  SUBROUTINE  CONTAINS ONLY INFORMATION FOR PLOT 
T I T L E S  AND LABELS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 AMP, PHA, SETAP, KTYPE1,  KTYPE2, I P ,  NAME, IONPLT) 
SUBROUTINE BODE (FRQ, A l ,  Ai l ,   PHI1,  PHI2,  TTJTL, TB,  NPTS, K I ,  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE BODE MAKES PLOTS OF  FREQUENCY  RESPONSES. AMP, PHA  AND 
SETAP  MUST BE  SINGLE  PRECISION BECAUSE  OF THE  PLOT SUBROUTINES. 

SUBROUTINE  AES500. 
BODE CALLS  PLOTTING  SUBROUTINES ONLY.  BODE I S  CALLED BY 

INPUTS: 

FRQ VECTOR OF  FREQUENCY 

A 1  VECTOR OF AMPLITUDE FOR 1 S T  CURVE 
(DIMENSION IS LESS THAN OR EQUAL  TO 500) 

(DIMENSION I S  LESS  THAN OR EQUAL TO 500) 
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A 2  VECTOR OF AMPLITUDE FOR 2ND CURVE, I F  DESIRED 
(DIMENSION I S  LESS THAN OR EQUAL TO 5 0 0 )  

P H I 1  VECTOR OF  PHASE FOR 1 S T  CURVE 
(DIMENSION I S  LESS  THAN OR EQUAL TO 500) 

P H I 2  VECTOR OF PHASE FOR 2ND CURVE, I F  DESIRED 
(DIMENSION I S  LESS THAN OR EQUAL TO 500) 

T T I T L   T I T L E  OF PLOT 
(DIMENSION I S  GREATER THAN OR EQUAL  TO 1 5 )  

TB T I T L E  OF PLOT 
(DIMENSION I S  GREATER THAN OR EQUAL  TO 1 5 )  

NPTS NUMBER OF POINTS PER  CURVE 
(LESS THAN OR EQUAL  TO 5 0 0 )  

K I  1, I F  ONE  CURVE  PER PLOT 
2, I F  TWO CURVES  PER PLOT 

KTYPEl  THESE TWO VARIABLES  DEFINE WHETHER 
THE PLOT I S  TO BE  LINEAR, 

KTYPE2 LOG, OR SEMI-LOG I 
I P  PLOT  ENTITY  INDEX  (USED BY  PLOTSUBS  ONLY) 

INCREASES BY ONE  FOR EACH FRAME 

(PARTITIONED  DATASET  THAT HOLDS PLOT  ENTITIES) 

1, I F  ONLINE  PLOTS 

NAME NAME OF  PLOT  DATASET ( 9 )  (USED BY  PLOTSUBS  ONLY) 

IONPLT 0, I F  OFFLINE PLOTS 

OUTPUTS : 

AMP  STORAGE  VECTOR  OF AMPLITUDES FOR 1 OR 2 CURVES 

PHA STORAGE  VECTOR OF  PHASES FOR 1 OR 2 CURVES 
(DIMENSION I S  LESS THAN OR EQUAL TO 1000) 

(DIMENSION IS LESS  THAN OR EQUAL TO 1000) 

INCREASES BY ONE  FOR EACH  FRAME 
I P  PLOT  ENTITY  INDEX  (USED BY  PLOTSUBS ONLY) 

TEMPORARY STORAGE: 

SETAP VECTOR 
(DIMENSION I S  LESS THAN OR EQUAL  TO 5 0 0 )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE B O L L I N  (A, A S ,  6, C, X, Y, Z1,  22, 23, N, NMAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE B O L L I N  CONVERTS X(DOT)=AX+BU,Y=C(TRANSPOSE)X TO 
TRANSFER FUNCTION Y/U=Z2/Z1 RATIO OF POLYNOMIALS. 
BOLLIN  CALLS  SUBROUTINES  DAVIS0 AND DANSKY. BOLLIN I S  CALLED  BY 
SUBROUTINE FRSPNS. 

I NPUTS : 

A  SYSTEM MATRIX  (N.NI 
B  SYSTEM VECTOR ( N j  ' 
C SYSTEM VECTOR (N)  
N ACTUAL S I Z E  OF MATRIX A 
NMAX MAXIMUM S I Z E  OF N 

OUTPUTS : 

z1 DENOMINATOR COEFFICIENT VECTOR (N) 
22 NUMERATOR COEFFICIENT VECTOR ( N )  
23 NUMERATOR COEFFICIENT VECTOR (N) 

TEMPORARY STORAGE: 

AS  MATRIX (N,N) 
X VECTOR ( N )  
Y VECTOR (N) 

38 



SUBROUTINE  CONDI (VARO, S S ,  S ,  IN,  JBL,  IOR, NBL, I B L ,   I C ,  D, 
1 IOP1, N, NMAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  CONDI CHANGES CONDITION OF A MATRIX BY PUTTING I T  I N  

CONDI  CALLS  SUBROUTINES REDU AND CALEA. CONDI I S  CALLED  BY 
BLOCK  DIAGONAL FORM ( I F  REDUCIBLE AND THEN  SCALING. 

SUBROUTINES  EIGEN AND ZEROES. 

INPUTS: 

1 

VARO MATRIX TO BE  CONDITIONED  (N,N) 
I O P l   P R I N T  OPTION; 0 NO PRINT, 1 P R I N T  
N  ACTUAL S I Z E  OF MATRIX VARO 
NMAX MAXIMUM S I Z E  OF N 

OUTPUTS : 

S CONDITIONED  MATRIX  (N,N) 
IOR  BLOCK-DIAGONALIZING  PERMUTATION  INTEGER 

VECTOR (N)  

BLOCK ( N )  

MATRIX  (N) 

NBL  INTEGER VECTOR OF S I Z E S  OF EACH IRREDUCIBLE 

D VECTOR OF DIAGONAL  ELEMENTS OF DIAGONAL  SCALING 

TEMPORARY STORAGE: 

ss MATRIX (N,N) 
I N  INTEGER VECTOR N 
J B L  INTEGER VECTOR \ N {  
I B L  INTEGER VECTOR N 
IC INTEGER VECTOR ((NI 

SUBROUTINE CONTRL (AA, BB, QC  NN, PCINV, KC, S S ,  CR, C I ,  x, TS, 
1 XR, TT, AAA, EXT, AR, A I ,   I P f R ,  IPERN,  ADBLE, N,  NC, N2, I O P l ,  
2 IOP2,  NMAX,  NCMAX, N2MAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CONTRL SOLVES  THE  OPTIMAL  LINEAR REGULATOR PROBLEM. I T  
SETS- UP AN N2 BY-N2"ATRIX AAA, USING  MATRICES AA, BB, QC,  NN, AND 
PCINV. CONTRL OBTAINS  THE  SOLUTION TO THE R I C C A T I  EQUATION, S S ,  
AND THEN COMPUTES THE CONTROL GAINS, KC. CONTRL CALLS  SUBROUTINES 
MATPRT AND RICSS. CONTRL I S  CALLED BY SUBROUTINE  AES800. 

INPUTS : 

AA 
BB 
QC 
NN 
PCINV 
IOP 1 
I O P 2  
N 
NC 
N 2  
NMAX 
NCMAX 
N 2MAX 

SYSTEM MATRIX (N,N) 
CONTROL INPUT  MATRIX (N,NC) 
STATE  WEIGHTING  MATRIX (N,N) 

INVERSE  OF CONTROL WEIGHTING  MATRIX (NC,NC) 
SCALING  PRINT  OPTION: 0, NO PRINT; 1, PRINT 

NUMBER OF STATE  VARIABLES 
EIGENVECTOR  PRINT  OPTION: 0, NO PRINT; 1, PRINT 

NUMBER OF CONTROL INPUTS 
DIMENSION OF HAMILTONIAN  MATRIX, 2 X  N 
MAXIMUM S I Z E  OF N 
MAXIMUM S I Z E  OF NC 
MAXIMUM S I Z E  OF N2 

STATE-CONTROL PRODUCT WEIGHTING  MATRIX (N,NC) 
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OUTPUTS : 

KC 
ss 
CR 
C I  
X 
TS 
AAA 

CONTROL GAIN  MATRIX (NC,N) 
LQR R I C C A T I  SOLUTION  MATRIX  (N,N) 

VECTOR OF IMAGINARY  PARTS OF EIGENVALUES  (N2) 
VECTOR OF REAL  PARTS OF EIGENVALUES OF AAA (N2)  

MODIFIED  EIGENVECTOR  MATRIX OF AAA  (N2,NZ) 
SCALING TRANSFORMATION VECTOR  OF AAA ( N 2 )  
HAMILTONIAN  MATRIX FOR LQR R I C C A T I  
EQUATION  (N2,NZ) 

TEMPORARY STORAGE : 

AR VECTOR N 2  
A I  VECTOR (N2{  . 
IPER  INTEGER VECTOR (N2 
IPERN  INTEGER VECTOR (N21  
ADBLE VECTOR (N X N) 

. ................................................................. 

1 xx, yy,   z2,  uu, a, 9, WbRK, NMAk, NMMAX, kCMAk,  NOMAk) 
SUBROUTINE COVAR  AA, BB HH,  CC DOUT, QQ PP KC, N NM,  NC,  NO, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE COVAR SETS UP MATRICES FOR SUBROUTINE  LAPNV  (LYAPUNOV 
EQUATION)  WHICH I S  THEN  CALLED TO OBTAIN  STATE  COVARIANCE  MATRIX, 
XX.  XX, KALMAN F I L T E R  ERROR COVARIANCE PP, AND CONTROL GAINS KC 
ARE USED TO OBTAIN CONTROL COVARIANCE - UU, OUTPUT  COVARIANCE 
- YY, AND MEASUREMENT COVARIANCE - ZZ. COVAR CALLS  SUBROUTINES 
ARRAY, LAPNV, AND MATPRT. COVAR I S  CALLED BY SUBROUTINE  AES800. 

INPUTS : 

AA 
BB 
HH 
cc 
DOUT 
QQ 
PP 
K C  
N 
NM 
NC 
NO 
NMAX 
NMMAX 
NCMAX 
N OMAX 

OUTPUTS : 

xx  
Y Y  
zz  
uu 

SYSTEM MATRIX (N,N) 
CONTROL INPUT  MATRIX (N.NC) 
MEASUREMENT MATRIX (NM,N) . 
OUTPUT MATRIX  (N0.N) 
 FEED^ FORWARD MATRIX' (NO,NC) 
POWER SPECTRAL  DENSITY  MATRIX (N,N) 
[OF  PLANT  DISTURBANCE) 
KALMAN F I L T E R  ERROR COVARIANCE MATRIX  (N,N) 
CONTROL GAIN  MATRIX (NC,N) 
NUMBER OF STATE  VARIABLES 
NUMBER  OF MEASUREMENTS 
NUMBER  OF  CONTROL INPUTS 
NUMBER  OF OUTPUTS 
MAXIMUM S I Z E  OF  N 
MAXIMUM S I Z E  OF NM 
MAXIMUM S I Z E  OF NC 
MAXIMUM S I Z E  OF NO 

STATE  COVARIANCE  MATRIX (N,N) 
OUTPUT  COVARIANCE  MATRIX  (N0,NO) 
MEASUREMENT COVARIANCE  MATRIX (NM,NM) 
CONTROL COVARIANCE  MATRIX (NC,NC) 

TEMPORARY STORAGE: 

A MATRIX N N 

WORK VECTOR (N)  
Q MATRIX [N:N] 

........................................................ 
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SUBROIJTINE  CTBL (B, C I ,  T, TINV,  TINVB,  EX1, ADBLE,  LEX, MEX, N, 
1 NC, NMAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  CTBL COMPUTES THE  (RELATIVE)  CONTROLLABILITY OF A 
LINEAR SYSTEM  DESCRIBED  BY XDOT=A*X + B*U. 
NOTE: FOR A COMPLEX EIGENVALUE  PAIR.  THE CORRESPONDING TWO COLUMN 
ELEMENTS IN TINVB-ARE STORED AS MAG~ITUOE AND ANGLE (IN DEGREES) 
RESPECT1  VELY. 
cTBL-CALLS-SUBROUTINES MATPRT AND MXINV. CTBL IS CALLED B Y  
SUBROUTINE AES4OO. 

INPUTS : 

B SYSTEM INPUT  MATRIX B (N,NC) 

(OF  MATRIX  A) 
C I  VECTOR  OF IMAG  PARTS OF THE  EIGENVALUES ( N )  

T MODIFIED EIGENVECTOR MATRIX OF MATRIX A  (N,N) 
N NUMBER OF  STATES 
NC NUMBER OF INPUTS 
NMAX MAXIMUM S I Z E  OF N 

OUTPUTS : 

TINV  INVERSE OF MATRIX T  (N.N) 
TINVB CONTROL EFFECTIVENESS MATRIX (N,NC) 

( I N  MAGNITUDE AND PHASE  ANGLE  FORM) 
EX 1 ~ I N V * B  WHERE TINV IS IN MODIFIED FORM (N,NC) 

TEMPORARY STORAGE : 

ADBLE VECTOR OF LENGTH  N  X  N 
LEX  INTEGER VECTOR ( N  
MEX INTEGER VECTOR (N\ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE DANSKY (A, X, Y, Z, N, NMAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  DANSKY COMPUTES THE COEFFICIENTS OF THE CHARACTERISTIC 
EQUATION. DANSKY CALLS  SUBROUTINE POLMPY. DANSKY I S  CALLED BY 
SUBROUTINE  BOLLIN. 

INPUTS : 

AS  CHARACTERISTIC  EQUATION  MATRIX (N,N) 
N  ACTUAL S I Z E  OF MATRIX  AS 
NMAX MAXIMUM S I Z E  OF  N 

OUTPUTS : 

Z CHARACTERISTIC  EQUATION  COEFFICIENT VECTOR (N) 

TEMPORARY STORAGE: 

X VECTOR (N 
Y VECTOR ( N I  
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SUBROUTINE  DAVISO  (A, B,  C,  N, NMAX, MC) 

. ................................................................. 
SUBROUTINE  DAVISO TRANSFORMS X(DOT)=AX+BU,Y=C TRANSP0SE)X USING 

DAVISO DOES  NOT CALL ANY SUBROUTINES. DAVISO I S  CALLED BY 
SUBROUTINE  BOLLIN. 

INPUTS: 

Z=TX SUCH THAT y I s  A STATE  VARIABLE  OF z(~oT~=TAT(INvERsE)+TBu. 

A  SYSTEM MATRIX N N) 

C SYSTEM VECTOR (N) 
B  SYSTEM VECTOR [ N j  

N ACTUAL S I Z E  OF MATRIX A 
NMAX MAXIMUM S I Z E  OF N 

OUTPUTS : 

A TRANSFORMED MATRIX A  N N) 
B TRANSFORMED  VECTOR B [N j 

TEMPORARY STORAGE: 

MC INTEGER SCALAR 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE DSCA (A, R,  CC,  N, MS) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE DSCA  FORMS R = A + CC * I, FOR EITHER VECTOR OR MATRIX 
I N  VECTOR  STORAGE MODE. DSCA  DOES NOT CALL ANY SUBROUTINES. 
DSCA I S  CALLED  BY  SUBROUTINE  LAPNV. 

INPUTS : 

A INPUT  MATRIX (N,N), OR INPUT VECTOR (N)  

N ACTUAL S I Z E  OF SUBSCRIPT(S) OF MATRIX  (VECTOR) A 
cc CONSTANT 

MS DECISION  VARIABLE, 2 = MATRIX, 0 OR 1 = VECTOR 

OUTPUTS : 

R  OUTPUT MATRIX (N,N) , OR OUTPUT VECTOR ( N )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE OSCRT (DT, A,  N, NMAX, IT IMES,  EADT, INTGRL,  C) 

. ................................................................. 
SUBROUTINE  DSCRT  CALCULATES  EXP(A*DT) AND THE  INTEGRAL 
FROM 0 TO DT OF EXP(  A*T) . AFTER  EACH TERM OF THE  SERIES IS 
MADE ON THE  PERCENT CHANGE OCCURRING I N  EACH  TERM  OF INTGRL. 

I F  I T I M E S = 5 0  BEFORE CONVERGENCE,  DSCRT’PROMPTS THE  USER AS TO 
WHETHER  TO  COMPUTE  MORE  TERMS I N  ORDER TO OBTAIN CONVERGENCE. 
DSCRT DOES NOT CALL ANY  SUBROUTINES.  DSCRT I S  CALLED  BY 
SUBROUTINE  AES600. 

WHEN A L L  CHANGES ARE LESS  THAN .00001 COMPUTATION I S  STOPPED. 
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INPUTS : 

D T   T I M E  STEP 
A INPUT  MATRIX (N,N) 
N ACTUAL S I Z E  OF  MATRIX A 
NMAX MAXIMUM S I Z E  OF N 

OUTPUTS : 

I T I M E S  NO. OF TERMS I N  SERIES  EXPANSION 
EADT  EXP(A*DT) (N,N) 
INTGRL  INTEGRAL OF EXP(A*T) FROM T=O TO T=DT (N,N) 

TEMPORARY STORAGE: 

C VECTOR (N)  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE EGCK (AAA, X, CPR, CPI ,  EX1,  EX2, PLAM, N, NMAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE EGCK PERFORMS THE  EIGENVALUE AND EIGENVECTOR CHECK. I T  
FORMS (AAA * X) AND ( X  * LAMBDA). EGCK  DOES NOT CALL ANY 
SUBROUTINE. EGCK I S  CALLED  BY  SUBROUTINE  RICSS. 

I NPUTS : 

AAA  ORIGINAL  MATRIX FOR WHICH  EIGENVALUES 
AND EIGENVECTORS WERE FOUND (N,N 

X MODIFIED  EIGENVECTOR  MATRIX (N,N\ 
CPR  VECTOR OF REAL  EIGENVALUES  (N) 
C P I  VECTOR  OF IMAGINARY  EIGENVALUES ( N )  
N  ACTUAL S I Z E  OF MATRIX AAA 
NMAX MAXIMUM S I Z E  OF N 

OUTPUTS : 

EX1 AAA * X MATRIX (N,N) 
EX2 X * LAMBDA MATRIX  (N,N) 

TEMPORARY STORAGE: 

PLAM  MATRIX  (N,N) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE EGVCTR ( M A ,  CPR, CPI, X, N2, TT, EXT, AR, AI ,   IPERN, 
1 IPER,  IOP2, NEMAX, ISEL,   IHALF)  

. ................................................................. 
SUBROUTINE EGVCTR OBTAINS  THE  N2  BY  N2  MODIFIED  EIGENVECTOR  MATRIX 
X OF MATRIX  AAA  USING  THE  INVERSE  ITERATION ALGORITHM. (THE 
EIGENVALUES  OF  AAA SHOULD HAVE  BEEN  PREVIOUSLY GENERATED USING 
SUBROUTINE  EIGQR AND STORED I N  CPR AND CPI. )   IEND  SPECIFIES THE 
NUMBER  OF PASSES THRU THE  INVERSE  ITERATION ALGORITHM. 
I F  ISEL=D,  ALL  EIGENVECTORS ARE OBTAINED. 
I F  ISEL IO,  ONLY  THE I S E L  (AND  NEXT ONE I F  A COMPLEX P A I R )  I S  

I F  I S E L  0, THE ISELTH VECTOR I S  PRINTED OUT  AFTER EACH ITER. 
I F  IHALF= l ,   THE  F IRST  N2 /2  VECTORS ARE OBTAINED. 
I F  IHALF .NE. 1, A L L  VECTORS ARE OBTAINED. 
EGVCTR CALLS  SUBROUTINES ARRAY, FACTR, MATPRT, AND PRMUTE. EGVCTR 
I S  CALLED  BY  SUBROUTINES  AES400,  AES800, AND RICSS. 

OBTAINED. 
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INPUTS: 

AAA 

C PR 

C P I  

N 2  
I OP2 
NEMAX 
I S E L  
I H A L F  

OUTPUTS : 

X 

MATRIX FOR WHICH  EIGENVECTORS  ARE TO BE  OBTAINED 

K k % ' O F  REAL PARTS  OF EIGENVALUES  (N2) 

VECTOR  OF IMAGINARY PARTS  OF EIGENVALUES  (N2) 

ACTUAL S I Z E  OF MATRIX  AAA 
P R I N T  OPTION: 0, NO PRINT; 1, PRINT 
MAXIMUM S I Z E  OF N 2  
SELECTION  OPTION 
SELECTION  OPTION 

(OF  AAA) 

(OF AAA) 

MODIFIED EIGENVECTOR MATRIX  OF AAA  (N2,N2) 

TEMPORARY  STORAGE : 

TT  MATRIX  N2  N2 

AR  VECTOR ( N 2  
A I  VECTOR ( N 2  1 
IPERN INTEGER VECTOR (N2 
1PER  INTEGER VECTOR ( N 2 1  

EXT  MATRIX [Nz:NZJ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE EIGEN  (A,  EIGR,  EIGI,   EX1, S S S ,  S ,  I A ,  16, LEX, MEX, 
1 I B L ,   I C ,  EX4, N, NMAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE EIGEN  OBTAINS THE EIGENVALUES  (EIGR AND E I G I )  OF N X N 
MATRIX A B Y   F I R S T  REDUCING ( I F  A IS REDUCIBLE), THEN SCALING, 
HESSENBURG  TRANSFORMING AND FINALLY  APPLYING  THE  'QR'  ALGORITHM 
EIGEN  CALLS  SUBROUTINES SCALEA,  CONDI, ARRAY,  HSBG, AND EIGQR. 
EIGEN I S  CALLED  BY  SUBROUTINES  AES400 AND AES800. 

INPUTS: 

A 
N 

MATRIX TO GET EIGENVALUES FOR (N,N) 
ACTUAL S I Z E  OF MATRIX  A 

NMAX MAXIMUM S I Z E  OF N 

OUTPUTS : 

EIGR VECTOR OF REAL PARTS OF EIGENVALUES  (N) 
E I G I  VECTOR OF IMAGINARY PARTS  OF EIGENVALUES  (N) 
S MATRIX A I N  REDUCED  AND SCALED FORM  (N,N) 
LEX  BLOCK-DIAGONALIZING PERMUTATION  INTEGER 

VECTOR (N) 
MEX INTEGER VECTOR OF S I Z E S  OF  EACH IRREDUCIBLE 

BLOCK (N) 
MATRIX (N) 

E X 4  VECTOR OF DIAGONAL ELEMENTS OF DIAGONAL  SCALING 

TEMPORARY STORAGE : 

sss MATRIX [N:N{ 
EX1  MATRIX N  N 

I A  INTEGER VECTOR ( N  
I B  INTEGER VECTOR ( N  
I B L  INTEGER VECTOR N 
I C  INTEGER VECTOR I N 1  
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SUBROUTINE  EIGQR  (XR,  N2, CR, CI,  IOP,  N2MAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  EIGQR COMPUTES THE EIGENVALUES  OF  MATRIX XR USING  THE 
QR ALGORITHM. THIS  MATRIX MUST BE I N  UPPER  HESSENBERG FORM. 
THE  MAXIMUM NUMBER OF QR ITERATIONS USED I N   F I N D I N G  ANY ONE 
EIGQR DOES NOT CALL ANY SUBROUTINES. EIGQR I S  CALLED  BY 
SUBROUTINES  EIGEN,  RICSS, AND  ZEROES. 

INPUTS : 

XR M A T R I X   ( I N  UPPER  HESSENBERG  FORM) FOR WHICH 
EIGENVALUES ARE  TO BE FOUND (N2,N2) 

N 2  ACTUAL S I Z E  OF  MATRIX XR 
IOP  PRINT  OPTION 

IOPIO,  THE EIGENVALUES ARE WRITTEN ON U N I T  06 
IOP=O, NO WRITING TAKES  PLACE 
I O P  0, THE EIGENVALUES ARE WRITTEN ON U N I T  06 AND 
ON UNIT   02   (TERMINAL)  

N2MAX  MAXIMUM S I Z E  OF N 2  

OUTPUTS : 

CR VECTOR OF REAL PARTS  OF EIGENVALUES  (N2) 
CI VECTOR  OF IMAGINARY PARTS  OF EIGENVALUES  (N2) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  ESTMAT  (AA, HH QQ, RRINV,  KE PP, CR, CI, X, TS, XR, 
1 TT, AAA,  EXT, AR, A I ,   IPkR,  IPERN,  AOBLk, N,  NM, N2, IOP1,  IOP2, 
2 NMAX, NMMAX, N2MAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  ESTMAT  SOLVES  THE  OPTIMAL  LINEAR  STATE  ESTIMATION 
PROBLEM. I T  SETS UP AN N2 BY N2  MATRIX AAA. USING  MATRICES AA, 
HH, QQ, AND RRINV. ESTMAT OBTAINS THE  KALMAN F I L T E R  ERROR 
COVARIANCE, PP,  AND THEN COMPUTES  THE KALMAN F I L T E R  GAINS,  KE. 
ESTMAT CALLS  SUBROUTINES  MATPRT AND RICSS. ESTMAT I S  CALLED  BY 
SUBROUTINE AESBOO. 

INPUTS: 

AA 
HH 
QQ 
RRINV 

I O P l  
I O P 2  
N 
NM 
N 2  
NMAX 
NMMAX 
N2MAX 

OUTPUTS : 

K E  
PP 

SYSTEM MATRIX (N,N) 
MEASUREMENT MATRIX (NM,N) 
POWER SPECTRAL DENSITY  MATRIX (N,N) 
(OF  PLANT  DISTURBANCE) 
~ N V E R S E  OF POWER S P E C ~ R A L  DENSITY MATRIX (NM,NM) 
(OF MEASUREMENT NOISE) 
SCALING  PRINT  OPTION: 0, NO PRINT; 1, PRINT 
EIGENVECTOR PRINT  OPTION: 0, NO PRINT; 1, P R I N T  
NUMBER OF  STATE  VARIABLES 
NUMBER OF MEASUREMENTS 

MAXIMUM S I Z E  OF N 
DIMENSION OF HAMILTONIAN  MATRIX, 2 X  N 

MAXIMUM S I Z E  OF NM 
MAXIMUM S I Z E  OF N 2  

KALMAN FILTER  GAIN  MATRIX (N,NM) 
KALMAN F I L T E R  ERROR COVARIANCE  MATRIX  (N,N) 
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CR  VECTOR OF  REAL PARTS  OF EIGENVALUES  (N2) 
(OF  AAA) 

(OF  AAA) 
C I  VECTOR OF IMAGINARY  PARTS OF EIGENVALUES  (N2) 

X MODIFIED EIGENVECTOR MATRIX OF  AAA  (N2,NZ) 
TS  SCALING TRANSFORMATION VECTOR OF  AAA ( N 2 )  
AAA  HAMILTONIAN  MATRIX FOR KALMAN F I L T E R   R I C C A T I  

EQUATION  (N2,N2) 

TEMPORARY  STORAGE : 

XR 
T T  
EXT  MATRIX (N2,NZ 
AR VECTOR (N2)  
A I  VECTOR (N2)  
IPER INTEGER VECTOR ( N 2 )  
IPERN INTEGER VECTOR ( N 2 )  
ADBLE VECTOR (N X N) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  FACTR  (A, PER, N, I A ,   I E R )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  FACTR FORMS THE LOWER AND UPPER TRIANGULAR  MATRICES  OF 
INPUT  MATRIX A,  SUCH THAT UPPER * LOWER = A. 
FACTR DOES  NOT CALL ANY SUBROUTINES.  FACTR I S  CALLED  BY 
SUBROUTINE EGVCTR. 

INPUTS : 

A INPUT  MATRIX (N,N) 
N ACTUAL S I Z E  OF MATRIX A 
I A  SAME AS N 

OUTPUTS : 

A INPUT  MATRIX I N  UPPER AND LOWER TRIANGULAR ~~ 

PER  TRANSPOSITION VECTOR  FOR MATRIX A ( N )  
I ER  ERROR OPTION. 

FORM (N,N) ~ 

I F  I E R  .NE. 0, FACTR IS WRONG 
I F  I E R  .EQ. 0, FACTR  HAS WORKED CORRECTLY 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  FRPOLY ( Z l ,  22, DD, HZ, 6, AMP, PHA, N )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  FRPOLY  EVALUATES TRANSFER FUNCTION  Z2(S) / Z l ( S )  FOR 
S = 6.28 * HZ * J. FRPOLY DOES NOT CALL ANY SUBROUTINES.  FRPOLY 
IS CALLED  BY  SUBROUTINE FRQP. 

INPUTS: 

z1 DENOMINATOR COEFFICIENT VECTOR 
22 NUMERATOR COEFFICIENT VECTOR 
DD DOUT OR 0.0 
HZ FREQUENCY 
N S I Z E  OF  COEFFICIENT VECTORS 

OUTPUTS : 

G COMPLEX TRANSFER FUNCTION 



AMP 
PHA  PHASE 

AMPLITUDE 

******+*********************************************************** 

1 ISPACE,  TSFTR) 
SUBROUTINE FRQP ( Z l ,   2 2 ,  DD, N, F I ,  DELF, IF, FREQ, AMP, PHASE, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  FRQP  GENERATES FREQUENCY RESPONSE AMP. AND PHASE, GIVEN 
TRANSFER FUNCTION NUMERATOR  AND DENOMINATOR POLYNOMIAL 
COEFFICIENTS  (GENERATED  BY  SUBROUTINE  BOLLIN). 
FRQP  CALLS  SUBROUTINE FRPOLY,  WHICH COMPUTES AMPLITUDE AND PHASE. 
FRQP IS CALLED  BY  SUBROUTINE FRSPNS. 

INPUTS : 

z1 
22 
DD 
N 
TSFTR 
F I  
DELF 
I F  
I SPACE 

OUTPUTS : 

FREQ 
AMP 
PHASE 

DENOMINATOR  POLYNOMIAL COEFFICIENT VECTOR 
NUMERATOR POLYNOMIAL  COEFFICIENT VECTOR 
DOUT OR 0.0 
S I Z E  OF COEFFICIENT VECTORS 
T IME SCALE  FACTOR 
I N I T I A L  FREQUENCY 
SPACING BETWEEN FREQUENCY POINTS 
NUMBER OF DESIRED  POINTS TO BE  GENERATED 
CONTROLS FREQUENCY OF  PRINTOUT FOR FREQ, 
AMP AND PHASE 

FREQUENCY VECTOR 
AMPLITUDE VECTOR 
PHASE VECTOR 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE  FRSPNS ( A  B, C DD, IOUT, J I N  N  TSFTR DXM1, DXV l ,  
1 DXVZ,  DXV3, EXM1, EkV1,  EkV2, NMAX, NOMAk bDCOF, bNCOF, FI ,  
2 DELF, IF, FREQ, AMP, PHASE, ISPACE, IPRNT~ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  FRSPNS COMPUTES THE FREQUENCY RESPONSE  OF  THE I O U T  
OUTPUT TO THE J I N   I N P U T  OF THE SYSTEM XDOT = A*X + B*U - Y = C*X 

SUBROUTINE  AES500. 

INPUTS: 

FRSPNS CALLS SUBROUTINES BOLLIN AND FRQP. FRSPNS IS C A L ~ E D  BY 

A 
B 
C 
DD 
I OUT 
J I N  
N 
TSFTR 
N MAX 
NOMAX 
F I  
DELF 
I F  
ISPACE 

IPRNT 

SYSTEM MATRIX [N,NC) 
SYSTEM MATRIX N,N) 

SYSTEM  MATRIX  (N0,N) 
DOUT OR 0.0 
INDEX  OF OUTPUT 
INDEX OF I N P U T  
ACTUAL SIZE  OF  MATRIX A 
TIME  SCALE FACTOR 
MAXIMUM S I Z E   O F  N 
MAXIMUM S I Z E  OF NO 
I N I T I A L  FREQUENCY 
SPACING BETWEEN FREQUENCY POINTS 
NUMBER OF DESIRED  POINTS TO BE GENERATED 
CONTROLS FREQUENCY OF PRINTOUT FOR FREQ, 
AMP AND  PHASE 
PRINT  OPTION, 0 I F  STANDARD, 1 I F  EXTENDED 
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OUTPUTS : 

DXV3 NUMERATOR COEFFICIENTS  (N) 
EXMl A * TSFTR  (N.N) 
E X V l   J I N T H  ROW OF-B ' *  TSFTR  (N) 
EXV2  IOUTTH COLUMN  OF C (N)  
DDCOF DENOMINATOR COEFFICIENTS  (N) 
DNCOF NUMERATOR COEFFICIENTS  (N)  . 
FREO FREOUENCY VECTOR (500) 
AMP . AMPLITUDE VECTOR '500 j 
PHASE  PHASE VECTOR (500\ 

TEMPORARY STORAGE : 

DXMl  MATRIX (N,N) 

. ................................................................. 

1 NMAX,  NMMAX) 
SUBROUTINE GAIN (AA, BB, CC, DO, 11, JJ, N, NZ, GAYN, EX7,  EX4, - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  GAIN I S  A COMPANION TO SUBROUTINE ZEROES. GAIN  
COMPUTES THE GAIN OF THE TRANSFER FUNCTION  RELATING  INPUT JJ AND 
OUTPUT I 1  OF THE  FOLLOWING  NTH ORDER SYSTEM. 

I N  STATE  VARIABLE  FORM): 
XDOT = AA *-X + ~ B B ' *  U 
Y = C C * X + D D * U  

G A I N  DOES NOT CALL ANY SUBROUTINES.  GAIN I S  CALLED BY SUBROUTINE 
AES700. 

INPUTS: 

AA 
BB 

c c  
DD 
I 1  
JJ 
N 
NZ 

NMAX 
NMMAX 

OUTPUTS : 

GAYN 

SYSTEM MATRIX  (N,N) 
CONTROL INPUT  MATRIX (N,NUMBER OF POSSIBLE 
INPUTS) 
OUTPUT'MATRIX (NUMBER OF POSSIBLE OUTPUTS,N) 
SCALAR RELATING U(JJ) TO Y(II I 

. .  

INDEX  OF OUTPUT Y 
INDEX OF INPUT U 
ACTUAL NUMBER  OF STATES 
NUMBER OF NUMERATOR ZEROES 
(OBTAINED  USING  SUBROUTINE 
MAXIMUM S I Z E  OF  N 
MAXIMUM NUMBER OF  OUTPUTS 

TRANSFER FUNCTION  GAIN 

I N  TRANSFER FUNCTION 
ZEROES) 

TEMPORARY STORAGE : 

EX4 VECTOR [ N j  
EX1  MATRIX N  N) 

.................................................................. 

SUBROUTINE  HSBG (N, A, I N )  

................................................................. 
SUBROUTINE HSBG REDUCES  A MATRIX  INTO UPPER ALMOST TRIANGULAR 
FORM. HSBG DOES NOT CALL ANY  SUBROUTINES. HSBG I S  CALLED  BY 
SUBROUTINES  EIGEN,  RICSS, AND ZEROES. 



I 

INPUTS : 

N  ACTUAL S I Z E  OF  MATRIX A 
A INPUT  MATRIX (N,N) 
I N  MAXIMUM S I Z E  OF  MATRIX A I N  THE CALLING PROGRAM; 

I N  = N,  WHEN MATRIX A I S   I N  VECTOR STORAGE MODE. 

OUTPUTS : 

A  OUTPUT MATRIX (N,N) 

. ................................................................. 
SUBROUTINE  ICRSP  (EX1, C, ICMTX,  AMPIN, DT, TIME, TYOUT, XNEW, 

2 NAME, IONPLT) 
1 XOLD, T T I T ,  TTOP, TYTIT,   IEXT,  N, NOUT,  NMAX,  NOUTMX, ITRMX, I P ,  

. . ................................................................ 
SUBROUTINE  ICRSP COMPUTES MULTIPLE  IN IT IAL  CONDITION RESPONSES OF 
THE SYSTEM: XDOT=A*X AND TYOUT=C*X 
BY  SOLVING  THE  DIFFERENCE  EQUATION:  XNEW=EXl*XOLD 
T H I S  SUBROUTINE  REQUIRES  THAT THE STATE  TRANSITION  MATRIX, 
EXP(A*DT),  BE  SUPPLIED AS INPUT  MATRIX  "EX1".  DESIRED I N I T I A L  
CONDITION  MAGNITUDES ARE SUPPLIED  AS VECTOR 'AMPIN'  AND THE 

SELECTED  BY  APPROPRIATELY  DEFINING ELEMENTS OF THE MATRIX  ' ICMTX'. 
ICRSP  CALLS  PLOTTING  SUBROUTINES ONLY. ICRSP I S  CALLED  BY 
SUBROUTINE  AES600. 

INPUTS: 

DESIRED I N I T I A L  CONDITION-OUTPUT RESPONSE COMBINATIONS  ARE 

C 
EX1  STATE  TRANSITION,  EXP(A*DT),  MATRIX (N,N) 

SYSTEM  OUTPUT MATRIX (NOUT,N) 
ICMTX  MATRIX OF ZEROES AND ONES (N,NOUT). 

ONES ARE PLACED I N  SELECTED  MATRIX  POSITIONS  TO 
INDICATE THE I N I T I A L  CONDITION RESPONSES DESIRED. 
THE FIRST  INDEX I S  'STATE', AND THE SECOND I S  
'OUTPUT'.  THUS  SUBROUTINE  ICRSP MAY CALCULATE  AS 
MANY AS N*NOUT I N I T I A L  CONDITION RESPONSES. 

AMPIN VECTOR  OF INPUT  INITIAL  CONDITION  AMPLITUDES  (N)  
DT   T IME STEP 
T T I T  PLOT T I T L E  ( 1 2 )  
TTOP  PLOT T I T L E  (12) 
T Y T I T  Y A X I S   T I T L E  ( 4 )  
N  ACTUAL S I Z E  OF  STATE  TRANSITION  MATRIX 
NOUT ACTUAL NUMBER  OF POSSIBLE OUTPUTS 

NOUTMX MAXIMUM S I Z E  OF NOUT 
NMAX MAXIMUM S I Z E  OF N 

ITRMX NUMBER OF  DESIRED  TIME RESPONSE POINTS 

INCREASES BY ONE FOR EACH  FRAME 

(PARTITIONED  DATASET  THAT HOLDS PLOT  ENTITIES)  

1, I F  ONLINE  PLOTS 

I P  PLOT  ENTITY  INDEX  (USED BY PLOTSUBS  ONLY) 

NAME  NAME OF PLOT  DATASET ( 9 )  (USED BY PLOTSUBS  ONLY) 

IONPLT 0, I F  OFFLINE  PLQTS 

OUTPUTS : 

T I M E  VECTOR OF TIME  POINTS  ( ITRMX) 
(SINGLE  PRECISION) 

TYOUT  MATRIX  OF OUTPUT TRANSIENT RESPONSES FOR ANY 
ONE S P E C I F I C   I N I T I A L  CONTIDION.  (ITRMX,NOUT) 
(SINGLE  PRECISION) 

I P  PLOT  ENTITY  INDEX'  (USED  BY  PLOTSUBS  ONLY) 
INCREASES BY ONE FOR EACH FRAME 

TEMPORARY STORAGE: 

XNEW VECTOR ( N  
XOLD VECTOR ( N ]  
I E X T  INTEGER VECTOR (N) 

.................................................................. 
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, ,. . .. 

SUBROUTINE  LAPNV  (A, X, 6, QIN,  NIN, WORK) 

. ................................................................. 
SUBROUTINE  LAPNV  SOLVES THE LYAPUNOV EQUATION, 
X*A' + A*X+B=O 
WHERE A '  I S  A-TRANSPOSE, 
A, B, AND X  ARE A L L  NXN MATRICES I N  VECTOR STORAGE MODE, B IS 
SYMMETRIC ON INPUT, AND X I S  SYMMETRIC ON OUTPUT. 
STEP 1 CALCULATE  X(0) = A'*B*A 
STEP 2 THE  EXACT  SOLUTION  X I S  THE L I M I T  OF THE SEQUENCE X(M) 

COMPUTE EACH  TERM X(M+l)  RECURSIVELY, BASED ON X(M) AS FOLLOWS, 
X(M+11=  X(MI + U(MI*XIM) * U ' I M )  

WHERE THE  M  REFERS TO THE  M-TH TERM OF THE SEQUENCE. 

LAPNV  CALL^ SU~ROU~INES DSCA, MXINV, MXMLT, MXTRA, AND MXADD. 
LAPNV I S  CALLED  BY  SUBROUTINES COVAR AND LYPCK. 

INPUTS: 

A  LYAPUNOV  EQUATION  MATRIX  (NIN,NIN 
B LYAPUNOV EQUATION  MATRIX  (NIN,NIN)) 
Q I N  CONVERGENCE FACTOR (TYPICALLY . 1 )  
N I N  ACTUAL S I Z E  OF MATRIX A 
WORK( 1) CONVERGENCE  CHECK CRITERION  (TYPICALLY 1 .E-6) 

OUTPUTS : 

X  OUTPUT MATRIX  (NIN,NIN) 

TEMPORARY STORAGE: 

WORK VECTOR ( 2  X N I N  X N I N )  

. ................................................................. 

SUBROUTINE  LOGSET  (TMIN, TMAX, TNARR, I N T )  

. ................................................................. 
SUBROUTINE  LOGSET  CALCULATES  THE DECADES NECESSARY TO INCLUDE THE 
MINIMUM AND MAXIMUM OF THE  DATA TO BE  PLOTTED. 
LOGSET DOES NOT CALL ANY SUBROUTINES. 

INPUTS: 

TNARR ACTUAL  DATA  MINIMUM AND MAXIMUM (2)  
LOCATION 1 HOLDS THE  MINIMUM 
LOCATION 2 HOLDS  THE  MAXIMUM 

OUTPUTS : 

TMIN  MINIMUM DECADE FOR PLOTTING 
TMAX MAXIMUM DECADE FOR PLOTTING 
I N T  NUMBER OF INTERVALS FOR LOG A X I S  

.................................................................. 
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SUBROUTINE  LYPCK  (A, Q, XHT, E,  R, EXI ,  WORK,  N, NMAX) 

SUBROUTINE  LYPCK COMPUTES THE RESIDUAL AND ERROR MATRICES 
ASSOCIATED  WITH  THE  LYAPUNOV  EQ. 

A*X + X*A**T + 0 = 0 
WHERE 

SOLUTION--XHT 
RESIDUAL--R=A*XHT + XHT*A**T + Q 
ERROR-----E=XHT - X 

WHERE A*E + E*A**T - R = 0 

WORK VECTOR 'WORK'  MUST BE  DIMENSIONED  1=2*N**2 
BEFORE COMPUTING E, R~ IS SYMMETRIZED. ' 

ERROR INDEX, TR(E)/TR(XHT), AND THE NORMALIZED DIAGONAL ELEMENTS 
THE  TRACES OF XHT R, & E ARE PRINTED OUT; ALSO  THE  NORMALIZED 

OF THE ERROR MATRIX ARE PRINTED OUT. 
LYPCK  CALLS  SUBROUTINES MATPRT, ARRAY,  AND LAPNV.  LYPCK I S  CALLED 
BY SUBROUTINE  AES800. 

INPUTS : 

A  LYAPUNOV  EQUATION  MATRIX 
Q LYAPUNOV EQUATION  MATRIX 
XHT  LYAPUNOV  SOLUTION  MATRIX  (N,N 
N  ACTUAL S I Z E  OF MATRIX  A 
NMAX MAXIMUM S I Z E  OF  N 

OUTPUTS : 

E 
R 

ERROR MATRIX (N,N) 
RESIDUAL  MATRIX  (N,N) 

TEMPORARY STORAGE: 

EX1  MATRIX  (N,N) 
WORK VECTOR ( 2  X  N X N )  

. ................................................................... 

SUBROUTINE MATCHG 

.................................................................... 
SUBROUTINE MATCHG I S  USED FOR CHANGING  MATRICES AND DIMENSIONS 
USING  NAMELIST  'MATDAT'. THE CHANGES I N  MATDAT ARE READ I N  FROM 
THE  TERMINAL.  DATA I S  TRANSFERRED TO  PROGRAM AESOP V I A  COMMONS 
'ABETC' AND 'DIMS'. MATCHG DOES N O T  CALL ANY SUBROUTINES. ' MATCHG 
I S  CALLED  BY  SUBROUTINE  AES200. 

SUBROUTINE MATIN 

**~*************m**~***1Hr***1Hr1Hr*m***m**m**m******** 

SUBROUTINE MATIN I S  USED FOR INPUTTING  MATRICES AND DIMENSIONS 
FOR A  'SMALL'  LQR/KALMAN  FILTER PROBLEM  TESTCASE. I T  
ALSO  PRINTS OUT THE  REFS  NAMELIST.  DATA I S  PROVIDED FOR A  3RD 
ORDER TEST CASE HAVING TWO CONTROLS AND TWO SET-POINT OUTPUTS, TWO 
DISTURBANCES  AND ONE NOISY MEASUREMENT. MATIN  CALLS  SUBROUTINE 
MATPRT. MATIN I S  CALLED  BY  SUBROUTINE AESPOO. 

m*****m***m*.**m1Hr"- ******* . . . .  
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SUBROUTINE  MATPRT  (A, N,  M, NMAX) 

*********************************w+*********~********************** 

SUBROUTINE  MATPRT  PRINTS  MATRIX A TEN COLUMNS PER PAGE. THE  DEVICE 
ON WHICH  THE PRINTING TAKES  PLACE I S  CONTROLLED B Y   ' I U N I T ' .  

MATPRT DOES NOT  CALL ANY SUBROUTINES.  MATPRT I S  CALLED  BY 
SUBROUTINES AESPOO, AES300,  AES400,  AES600,  AES700,  AES800, COVAR, 
CTBL, EGCK, LYPCK,  MATIN, MATRD, MODSHP, OBSBL, RESI,  RICCHK, 
RICSS, AND  UNRML. 

INPUTS: 

IUNIT=2---TERMINAL,  IUNIT=6---LINEPRINTER. 

A MATRIX TO BE  PRINTED (N,M) 
N NUMBER OF ROWS I N  MATRIX A 
M NUMBER OF COLUMNS I N  MATRIX A 
NMAX MAXIMUM S I Z E  OF N 

****************************************************************** 

SUBROUTINE  MATRD 

SUBROUTINE MATRD I S  USED FOR INPUTTING  MATRICES,  DIMENSIONS, AND 
REFS  USING  NAMELISTS  'MATDAT' AND 'REFS'. MATDAT AND REFS ARE 
READ I N  FROM U N I T  33. DATA I S  TRANSFERRED TO  PROGRAM AESOP V I A  
COMMONS 'COMl',   'ABETC',  'DIMS',  'DIMS2', AND 'REFCOM'. 
MATRD CALLS  SUBROUTINE MATPRT. MATRD I S  CALLED  BY  SUBROUTINE 
AESZOO. 

SUBROUTINE MODSHP (A, B, CI ,  N, NMAX) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE MODSHP CALCULATES MODE SHAPES I N  MAGNITUDE  AND 
ANGLE  (DEGREE) FORM.  MODSHP CALLS  SUBROUTINE MATPRT. MODSHP I S  
CALLED  BY  SUBROUTINES  AES400,  AES800, AND RICSS. 

INPUTS: 

A MODIFIED  EIGENVECTOR  MATRIX (N,N 

N ACTUAL NUMBER OF EIGENVALUES 
NMAX MAXIMUM S I Z E  OF N 

C I  VECTOR OF IMAGINARY  EIGENVALUES I N )  

OUTPUTS : 

B MODESHAPE I N  MAGNITUDE AND ANGLE FORM (N,N) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

52 



SUBROUTINE MXADD (A, B,  R,  N, M) 

SUBROUTINE MXADD ADDS TWO IDENTICALLY  SIZED  MATRICES TO  FORM A 
RESULTANT  MATRIX.  R CAN BE THE SAME AS  A OR B I N  THE CALLING 
PROGRAM. MXADD DOES NOT CALL ANY SUBROUTINES. MXADD I S  CALLED 
BY  SUBROUTINE  LAPNV. 

INPUTS: 

A F IRST  INPUT  MATRIX (N,M) 

M NUMBER OF COLUMNS I N  MATRICES A, B, AND R 

B 
N 

SECOND INPUT  MATRIX (N,M) 
NUMBER  OF  ROWS I N  MATRICES A,  B, AND R 

OUTPUTS : 

R  OUTPUT MATRIX (N,M) 

. ................................................................. 

SUBROUTINE  MXINV  (A, N,  D, L, M) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE  MXINV  INVERTS A DOUBLE PRECISION  MATRIX I N  VECTOR 

CALCULATED  BUT I S  ZERO I F  THE  MATRIX  BEING  INVERTED I S  SINGULAR. 
MXINV DOES NOT CALL ANY SUBROUTINES. MXINV I S  CALLED  BY 
SUBROUTINES  AES300,  AES800,  CTBL, LAPNV, AND RICSS. 

INPUTS : 

STORAGE MODE BY  USING THE GAUSS-JORDAN METHOD. THE  DETERMINANT I S  

A 
N 

MATRIX TO BE  INVERTED, VECTOR STORAGE MODE (N,N) 
ACTUAL S I Z E  OF MATRIX A 

OUTPUTS : 

A MATRIX  INVERTED FORM,  VECTOR STORAGE MODE (N,N) 
D  SCALAR  DETERMINANT  (ZERO I F  MATRIX A I S  SINGULAR) 

TEMPORARY STORAGE : 

L INTEGER VECTOR ( N  
M  INTEGER VECTOR ( N I  

. ................................................................. 

SUBROUTINE  MXMLT  (A, B,  R,  N, L, M) 

. ................................................................. 
SUBROUTINE  MXMLT MULTIPL IES TWO MATRICES I N  VECTOR STOGAGE MODE 
TO FORM A  RESULTANT  MATRIX I N  VECTOR STORAGE MODE. MXMLT DOES 
NOT CALL ANY SUBROUTINES.  MXMLT I S  CALLED  BY  SUBROUTINE  LAPNV. 

INPUTS : 

L NUMBER OF COLUMNS IN MATRIX A 
AND ROWS I N  MATRIX B 

M NUMBER OF COLUMNS I N  MATRIX B 

OUTPUTS : 

R  OUTPUT MATRIX (N,M) 

****m*K**.*****lt*m+*****mH******ti********* 
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SUBROUTINE  MXTRA  (A, R,  N, M) 

. ................................................................ 
SUBROUTINE  MXTRA  TRANSPOSES  AN  N  BY  M MATRIX  A I N  VECTOR STORAGE 
MOUE  TO  FORM  AN M  BY  N  MATRIX  R I N  VECTOR  STORAGE  MODE. MXTRA 
DOES  NOT CALL ANY SUBROUTINES. MXTRA I S  CALLED  BY  SUBROUTINE 
LAPNV. 

INPUTS: 

A  MATRIX TO BE TRANSPOSED (N,M) 
N NUMBERS OF ROWS I N  MATRIX  A 

AND COLUMNS I N  MATRIX  R 
M NUMBERS  OF  COLUMNS I N  MATRIX  A 

AND ROWS I N  MATRIX  R 

OUTPUTS : 

R  RESULTANT  MATRIX (M,N) 

SUBROUTINE NRML (A, B, C,  H, Q, RINV, D, DOUT,  CSP,  N,  NC,  NO,  NM, 
1 ND,  NMAX,  NCMAX,  NOMAX,  NMMAX, F L 3 4 )  

. ................................................................. 
SUBROUTINE NRML READS FOUR NORMALIZATION VECTORS  FROM NAMELIST 
NRMS  AND NORMALIZES  THE A,  B,  C,  H, Q, RINV, D, DOUT,  AND CSP 
MATRICES.  THE  SYSTEM  THUS  REPRESENTED IS DEFINED BY  NORMALIZED 
STATE, CONTROL, OUTPUT, MEASUREMENT, AND SET  POINT VECTORS. 
THE  NORMALIZATION VECTORS ARE TRANSFERRED TO THE MAIN PROGRAM 
THROUGH COMMON 'NORMS'. NRML DOES NOT CALL ANY SUBROUTINES. 
NRML I S  CALLED  BY  SUBROUTINE AES400. 

INPUTS: 

A 
B 
C 
H 
Q 

RINV 

D 
DOUT 

CSP 
N 
NC 
NO 
NM 
ND 
NMAX 
NCMAX 
NOMAX 
NMMAX 
FL34 

UN-NORMALIZED  SYSTEM  MATRIX (N,N) 
UN-NORMALIZED CONTROL INPUT  MATRIX  (N,NC) 
UN-NORMALIZED  OUTPUT  MATRIX  (N0,N 

UN-NORMALIZED POWER SPECTRAL  DENSITY  MATRIX OF 

UN-NORMALIZED  INVERSE OF POWER SPECTRAL  DENSITY 

UN-NORMALIZED MEASUREMENT MATRIX /NM,N) 

PLANT  DISTURBANCE  (N,N) 

MATRIX OF MEASUREMENT NOISE (NM,NM) 
UN-NORMALIZED  DISTURBANCE  INPUT  MATRIX  (N.ND) 
UN-NORMALIZED  FEED FORWARD MATRIX FOR 
NON-ZERO  SET POINT REGULATOR (N0,NC) 
UN-NORMALIZED  SET  POINT  OUTPUT  MATRIX (NC,N) 

. -  . 

ACTUAL NUMBER OF STATES 
ACTUAL NUMBER OF CONTROL INPUTS 
ACTUAL NUMBER OF  OUTPUTS 
ACTUAL NUMBER OF MEASUREMENTS 
ACTUAL NUMBER OF  DISTURBANCE  INPUTS 
MAXIMUM S I Z E  OF  N 
MAXIMUM S I Z E  OF  NC 
MAXIMUM S I Z E   O F  NO 
MAXIMUM S I Z E  OF NM 
LOGICAL VARIABLE, ON INPUT 

L . E ,  NORMALIZATION VECTOR INFORMATION 
(NAMELIST NRMS) NEEDS TO BE READ IN 

TRUE, NORMALIZATION VECTOR INFORMATION 
NAMELIST NRMS HAS  ALREADY  BEEN  READ I N  
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OUTPUTS : 

A 
B 
C 
H 
Q 
R  INV 

D 

DOUT 

CSP 
F L 3 4  

NORMALIZED  SYSTEM  MATRIX  (N,N) 
NORMALIZED CONTROL INPUT  MATRIX (N,NC) 
NORMALIZED  OUTPUT  MATRIX  (N0.N 

NORMALIZED POWER SPECTRAL  DENSITY  MATRIX 0 
PLANT  DISTURBANCE  (N,N) 

MATRIX OF MEASUREMENT NOISE (NM,NM) 
NORMALIZED  INVERSE  OF POWER SPECTRAL  DENS1 

NORMALIZED  DISTURBANCE  INPUT  MATRIX (N,ND) 

NORMALIZED MEASUREMENT MATRIX 2NM.N) 

NORMALIZED  FEED FORWARD MATRIX FOR 

NORMALIZED  SET  POINT OUTPUT MATRIX NC,N) 
NON-ZERO SET POINT REGULATOR (NO,NC 1 
LOGICAL  VARIABLE, ON OUTPUT SET TO 
TRUE I F  NAMELIST NRMS HAS  BEEN  READ I N  

. " 

IF 

TY 

.................................................................. 

SUBROUTINE  OBSBL (H, T, CI ,  HT, EX1, N,  NR,  NRMAX, NMAX) 

. ................................................................. 
SUBROUTINE  OBSBL COMPUTES THE OBSERVABILITY  MATRIX  HT FOR THE 

NOTE: FOR A COMPLEX EIGENVALUE  PAIR. THE  CORRESPONDING TWO COLUMN 
LINEAR  SYSTEM  DESCRIBED BY XDOT=A*X + B*U,  AND Y=H*X. 

ELEMENTS I N  HT  ARE STORED AS MAGNITUDE AND ANGLE ( I N  DEGREES) 
RESPECTIVELY. 
OBSBL  CALLS  SUBROUTINE  MATPRT.  OBSBL I S  CALLED  BY  SUBROUTINE 
AES400. 

INPUTS: 

H  SYSTEM  OUTPUT  MATRIX  (NR,N) 
T  MODIFIED  EIGENVECTOR  MATRIX OF MATRIX  A  (N,N) 
C I  VECTOR  OF IMAG  PARTS  OF  THE  EIGENVALUES  (N) 

N  ACTUAL NUMBER  OF  COLUMNS I N  MATRIX  H 
(OF MATRIX  A) 

NR ACTUAL NUMBER OF ROWS I N  MATRIX  H 
NRMAX MAXIMUM S I Z E  OF NR 
NMkX  MAXIMUM S I Z E  OF  N 

OUTPUTS: 

HT  OBSERVABILITY  MATRIX (NR,N 

EX1  OBSERVABILITY  MATRIX (NR,N) 
( I N  MAGNITUDE AND PHASE AN 6 LE FORM) 

........................................................................ 

SUBROUTINE ORDER (CR, CI ,  NE, EPS) 

................................... 

GIVEN  A  SET  OF  NE  EIGENVALUES,  SYMMETRICALLY  LOCATED  WITH  RESPECT 
TO THE  IMAGINARY  AXIS.  SUBROUTINE ORDER PLACES  ONES  WITH  POSITIVE 
REAL  PARTS I N   F I R S T   N E / 2  LOCATIONS.  CORRESPONDING  SYMMETRIC 
EIGENVALUES  WITH  NEGATIVE  REAL  PARTS ARE PUT I N  LOCATIONS 
NE/2 + 1 THROUGH  NE. EPS I S  THE CONVERGENCE CRITERION USED I N  
DETERMINING I F  A P A I R  OF  EIGENVALUES ARE SYMMETRIC. ORDER DOES 
NOT  CALL ANY SUBROUTINES. ORDER I S  CALLED  BY  SUBROUTINE  RICSS. 
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INPUTS: 

CR VECTOR OF REAL  PARTS OF EIGENVALUES 
UNORDERED (NE) 

CI VECTOR OF IMAGINARY  PARTS OF EIGENVALUES 
UNORDERED (NE) 

NE NUMBER  OF EIGENVALUES 
EPS CRITERION FOR  SYMMETRY 

OUTPUTS : 

CR VECTOR  OF REAL  PARTS OF EIGENVALUES 
ORDERED (NE) 

ORDERED (NE) 
CI VECTOR  OF IMAGINARY  PARTS OF EIGENVALUES 

.................................................................. 

SUBROUTINE POLMPY (X, Y, Z, NX, NY, NZ)  

. ................................................................. 
SUBROUTINE POLMPY MULTIPLIES X*Y=Z (THE  LEADING  POLYNOMIAL 
COEFFICIENT I S  ASSUMED  TO BE UNITY).  POLMPY  DOES  NOT CALL ANY 
ANY SUBROUTINES. POLMPY I S  CALLED  BY  SUBROUTINE  DANSKY. 

INPUTS: 

X  POLYNOMIAL  COEFFIENT VECTOR (NX) 
Y POLYNOMIAL  COEFFIENT VECTOR (NY) 
NX ORDER OF  POLYNOMIAL FOR WHICH VECTOR X I S  THE 

NY ORDER OF  POLYNOMIAL FOR WHICH VECTOR Y I S  THE 
L I S T  OF COEFFICIENTS (OTHER  THAN  THE F I R S T )  

L I S T  OF COEFFICIENTS (OTHER THAN  THE F I R S T )  

OUTPUTS : 

Z X VECTOR * Y VECTOR (NZ) 
NZ ORDER OF  POLYNOMIAL FOR WHICH VECTOR Z I S  THE 

L I S T  OF  COEFFICIENTS (OTHER  THAN  THE F I R S T )  

Z X VECTOR * Y VECTOR (NZ) 
NZ ORDER OF  POLYNOMIAL FOR WHICH VECTOR Z I S  THE 

L I S T  OF  COEFFICIENTS (OTHER  THAN  THE F I R S T )  

.................................................................. 

SUBROUTINE  PREREQ (WHEN, ICA,  IAND, MZ, 11) 

.................................................................. 
SUBROUTINE  PREREQ CHECKS TO SEE I F  PREREQUISITE CASES  HAVE  BEEN 
DONE FOR THE  CASE  ABOUT TO BE RUN. I F  NOT, IT PRINTS OUT WHAT THE 
PREREQUISITES ARE. PREREQ DOES  NOT CALL ANY SUBROUTINES.  PREREQ 
I S  CALLEO BY SUBROUTINES  AES100, AESPOO, AES300,  AES400, AESSOO, 
AES600,  AES700, AND AES800. 

INPUTS: 

WHEN LOGICAL  MATRIX  OF PREREQS (450,50) 
I C A  VECTOR OF CASE NUMBERS  TO BE DONE (1000) 
MZ WHICH  CASE I S  TO BE CHECKED FOR PREREOUISITES 
I1 WHICH ROW OF MATRIX 'WHEN' IS TO BE LOOKED AT  

OUTPUTS : 

IAND  DECISION  VARIABLE, 0 IF PREREQUISITES HAVE  BEEN 
DONE, 1 I F  PREREQUISITES HAVE NOT BEEN DONE 

.................................................................... 
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SUBROUTINE PRMUTE (X,  ITRANS,  IA, NE, LA,  NEMAX) 

. ................................................................ 
SUBROUTINE PRMUTE PERMUTES ELEMENTS I N   L A  COLUMN OF  NE  BY N E  
MATRIX  X AS DICTATED  BY  TRANSPOSITION VECTOR ITRANS.  ITRANS I S  
PRODUCED, I N   T H I S  CASE, BY  SUBROUTINE  FACTR. 
PRMUTE DOES NOT CALL ANY SUBROUTINES. PRMUTE I S  CALLED  BY 
SUBROUTINE EGVCTR. 

I NPUTS : 

X MATRIX TO BE PERMUTED (NE,NE) 
ITRANS  TRANSPOSITION VECTOR (NE) 
NE 
L A  

ACTUAL S I Z E  OF  MATRIX X 
SPECIFIC COLUMN OF MATRIX X TO BE  PERMUTED BY 
THE  TRANSPOSITION VECTOR ITRANS 

NEMAX MAXIMUM S I Z E  OF  NE 

OUTPUTS : 

X INPUT  MATRIX I N  PERMUTED FORM (NE,NE) 

TEMPORARY STORAGE: 

I A  INTEGER VECTOR (NE) 

. ................................................................. 

1 NMAX) 
SUBROUTINE  REDU  (VARO, SS, S, IN,  JBL,  INBL,  IOR, NBL, I B L ,  I C ,  N, 

. . ................................................................ 
SUBROUTINE  REDU  USES  HARARYS METHOD  FOR REDUCTION OF A  REDUCIBLE 

REDU I S  CALLED  BY  SUBROUTINE  CONDI. 
MATRIX TO BLOCK  DIAGONAL FORM. REDU DOES NOT CALL ANY SUBROUTINE. 

INPUTS: 

VARO MATRIX TO BE REDUCED (N,N) 
N  ACTUAL S I Z E  OF MATRIX VARO 
NMAX MAXIMUM S I Z E  OF N 

OUTPUTS : 

S BLOCK  DIAGONAL  MATRIX ( N, N) 
I N B L  NUMBER OF REDUCIBLE  BLOCKS 
IOR  BLOCK-DIAGONALIZING  PERMUTATION  INTEGER 

VECTOR (N)  

BLOCK  (N) 
NBL  INTEGER VECTOR  OF S I Z E S  OF EACH IRREDUCIBLE 

TEMPORARY  STORAGE : 

ss MATRIX (N,N) 
I N  INTEGER VECTOR N 
J B L  INTEGER VECTOR I N /  
I B L  INTEGER VECTOR N 
I C  INTEGER VECTOR (N) 

. ................................................................. 
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SUBROUTINE R E S I  (C, B, EIGR, E I G I ,  R, EXA, N,  NC,  NO,  NMAX, NOMAX) 

................................................................. 
SUBROUTINE R E S I  COMPUTES THE RESIDUE  MATRICES FOR THE LINEAR 
SYSTEM, XDOT=A*X + B*U,  AND,  Y=C*X 
WHERE THE  SYSTEM I S  ASSUMED  TO BE I N  BLOCK-DIAGONAL FORM. 
MATRICES  C  AND  B ARE INPUT TO THE PROGRAM. MATRIX  C I S  ASSUMED TO 
HAVE  BEEN TRANSFORMED TO THE FORM CORRESPONDING TO BLOCK-DIAGONAL 
A MATRIX USING SUBROUTINE OBSBL. MATRIX B IS ASSUMEKTO  HAVE-BEEN 
SIMILARLY TRANSFORMED USING  SUBROUTINE  CTBL. 
NOTE: TWO RESIDUE  MATRICES ARE PRINTED OUT FOR A COMPLEX 
EIGENVALUE;  THE F I R S T  CONTAINS  RESIDUE  MAGNITUDES AND THE SECOND 
CONTAINS  RESIDUE  PHASE  ANGLES I N  DEGREES. 
RESI  CALLS  SUBROUTINE MATPRT. R E S I   I S  CALLED  BY  SUBROUTINE  AES400. 

INPUTS: 

C OUTPUT  MATRIX  (N0,N) 
El 
EIGR VECTOR  OF REAL  PARTS OF EIGENVALUES  (N) 

INPUT  MATRIX  (N,NC) 

E I G I  VECTOR  OF IMAGINARY  PARTS  OF  EIGENVALUES ( N )  . .  
N NUMBER OF STATES 
NC  NUMBER  OF INPUTS 
NO  NUMBER OF OUTPUTS 
NMAX MAXIMUM S I Z E  OF N 
NOMAX MAXIMUM S I Z E  OF NO 

OUTPUTS: 

R RESIDUE ARRAY (N,NO,NC) 

TEMPORARY STORAGE : 

EXA  MATRIX (N0,NC)  TEMPORARILY  STORES EACH RESIDUE 
MATRIX BEFORE BEING  PRINTED OUT 

.................................................................. 

SUBROUTINE  RICCHK  (AAA, S, R ,  N,  NMAX, NZMAX) 

.................................................................. 
SUBROUTINE  RICCHK COMPUTES THE  RESIDUAL ERROR MATRIX FOR THE 
R ICCATI  EQUATION 

S*AAA(22)*T + AAA(22)*S - S*AAA 12)*S + AAA(21)  = 0 
OR , -S*AAA(11) - A A A ( l l ) * T * S  - S*AAA[12)*S + AAA(21)  = 0 

WHERE 
S=RICCATI SOLUTION MATRIX 
AAA=THE FOUR N  BY  N  BLOCKS OF THE HAMILTONIAN  MATRIX 
R=RESIDUAL ERROR MATRIX 
R I S  GIVEN BY 

= - ( S * A A A [ l l )  + A A A ( l l ) * T * S  - S*AAA[12]*S - AAAt21) )  
RICCHK  CALLS  SUBROUTINE MATPRT.  RICCHK I S  CALLED  BY  SUBROUTINE 
AESBOO. 

INPUTS: 

R= S*AAA 2 2  *T + AAA(22)*S - S*AAA 1 2  * S  + AAA 2 1  

AAA  HAMILTONIAN  MATRIX ( 2  X N,2 X  N) 

N  ACTUAL S I Z E  OF  MATRIX S 
NMAX MAXIMUM S I Z E  OF  N 
N2MAX 2 X NMAX 

S RICCAPI  SOLUTION  MATRIX (N,N) 
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OUTPUTS : 

R  RESIDUAL ERROR MATRIX  (N,N) 

................................................................... 

1 IPERN, AR, A I ,  ADBLE,  IOP1,  IOP2, N, N2, NMAX, N2MAXj 
SUBROUTINE  RICSS (AAA, X, OUTPUT, CR, CI, TS, XR, EXT TT, IPER, 

. ................................................................. 
SUBROUTINE  RICSS COMPUTES THE  OUTPUT  SOLUTION TO THE  STEADY  STATE 

WHICH I S  THE HAMILTONIAN  MATRIX FOR KALMAN F ILTER  MATRIX   R ICCATI  
MATRIX  RICCATI  EQUATION. THE INPUT I S  AN N 2  BY N2  MATRIX, AAA, 

EQUATION.  RICSS  CALLS  SUBROUTINES ARRAY, MXINV, EGCK, EGVCTR, 
EIGQR, HSBG, MATPRT, MODSHP,  ORDER, AND SCALEA. RICSS I S  CALLED 
BY  SUBROUTINES  CONTRL AND ESTMAT. 

INPUTS: 

AAA 

I OP1 
IOP2 
N 
N2 
N MAX 
N 2MAX 

OUTPUTS : 

X 
OUTPUT 
CR 

C I  

TS 

HAMILTONIAN  MATRIX FOR KALMAN F I L T E R   R I C C A T I  
EQUATION  (N2,N2) ~ 

SCALING  PRINT  OPTION: 0, NO PRINT; 1 ,  
EIGENVECTOR PRINT  OPTION: 0, NO PRINT 
NUMBER  OF STATE  VARIABLES 
DIMENSION OF HAMILTONIAN  MATRIX,  2 X 
MAXIMUM S I Z E  OF N 

, PRI  
'; 1, 

N 

.NT 
P R I N T  

MAXIMUM S I Z E  OF N 2  

MODIFIED  EIGENVECTOR  MATRIX OF  AAA  (N2,N2) 

VECTOR  OF REAL  PARTS OF EIGENVALUES  (N2) 
RICCATI SOLUTION MATRIX (N,N) 

(OF AAA) 
VECTOR OF  IMAGINARY  PARTS OF EIGENVALUES  (N2) 

SCALING TRANS  ORMATION VECTOR  OF AAA (N2)  
(OF A A A I  

TEMPORARY STORAGE : 

XR 
EXT 
T T  
I PER 
I PERN 
AR 
A I  
ADBLE 

MATRIX (N2,N2 
MATRIX  \N2,N2/ 
MATRIX N2,N2 
INTEGER VECTOR 
INTEGER VECTOR 

VECTOR N  X  N) 

SUBROUTINE  SCALEA  (A, TS, N2, IOP1,  N2MAX) 

.................................................................. 
SUBROUTINE  SCALEA TRANSFORMS N 2  BY N2  MATRIX  A  USING  DIAGONAL 

MATRIX I S  STORED I N  A. I F  SCALEA  FINDS  A TO BE  REDUCIBLE,  IER I S  
MATRIX  TS SO THAT  THE NORM OF A I S  MINIMIZED. THE  RESULTING  SCALED 

SET TO 1. SCALEA DOES NOT CALL ANY SUBROUTINES.  SCALET IS CALLED 
BY SUBROUTINES  CONDI,  EIGEN, AND RICSS. 

INPUTS: 

A  MATRIX TO BE  SCALED  (N2,NZ) 
N2 
I O P l   P R I N T  OPTION; 0 NO PRINT, 1 PRINT 

ACTUAL S I Z E  OF MATRIX  A 

N2MAX  MAXIMUM S I Z E  OF N 2  
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OUTPUTS : 

A  INPUT  MATRIX I N  SCALED FORM (N2,NZ) 
TS VECTOR OF DIAGONAL  ELEMENTS  OF  DIAGONAL  SCALING 

MATRIX  (N2) 

. ................................................................. 

SUBROUTINE  STP  (EX1,  EX2, €3, C, DOUT, IOMTX,  AMPIN, DT, TIME, 
1 TYOUT, XNEW, XOLD, ANR, T T I T ,  TTOP, TYTIT,  IEXT, N, NIN, NOUT, 
2 NMAX, NINMAX, NOUTMX, ITRMX, I P ,  NAME, IONPLT) 

. ................................................................. 
SUBROUTINE  STP COMPUTES MULTIPLE STEP  RESPONSES OF THE  SYSTEM 

BY SOLVING  THE  DIFFERENCE  EQ. 

T H I S  SUBROUTINE  REQUIRES  THAT  THE  STATE  TRANSITION  MATRIX, 
EXP(A*DT), AND I T S  INTEGRAL FROM TIME=O TO  TIME=DT,  BE  SUPPLIED AS 
INPUT  MATRICES  'EX1' AND 'EX2'.  DESIRED  INPUT  STEP  MAGNITUDES  ARE 
SUPPLIED AS  VECTOR 'AMPIN' AND THE DESIREU  STEP  INPUT-OUTPUT 
RESPONSE COMBINATIONS ARE SELECTED  BY  APPROPRIATELY DEFINING 
ELEMENTS OF THE MATRIX  'IOMTX'.  STP  CALLS  PLOTTING  SUBROUTINES 
ONLY. STP I S  CALLED  BY  SUBROUTINE AESGOO. 

INPUTS: 

XDOT=A*X+B*U; TYOUT=C*X+DOUT*U 

XNEW=EXl*XOLD + EX2*B*AMPIN( L )  

EX1 STATE  TRANSITION,  EXP(A*DT),  MATRIX  (N,N) 
EX2  INTEGRAL OF THE  STATE  TRANSITION  MATRIX FROM 

B 

DOUT 
I OMTX 

AMPIN 
DT 
T T I T  
TTOP 
T Y T I T  
N 
N I N  
NOUT 
NMAX 
N I NMAX 

TIME=O TO TIME=DT  (N,N) 
(CONTINUOUS)  SYSTEM  INPUT  MATRIX  (N,NIN) 
SYSTEM  OUTPUT  MATRIX  (N0UT.N) 
SYSTEM INPUT/OUTPUT FEEDTHRU~MATRIX ( NOUT,NIN) 
MATRIX  OF ZEROES AND  ONES (NIN,NOUT). 
ONES ARE PLACED I N  SELECTED  MATRIX  POSITIONS  TO 
INDICATE THE STEP  RESPONSES  DESIRED. THE F I R S T  
INDEX I S  ' INPUT' .  THE SECOND I S  'OUTPUT'.  THUS 
SUBROUTINE  STP MAY CALCULATE AS  MANY  AS NIN*NOUT 
STEP RESPONSES. 
VECTOR  OF INPUT STEP  AMPLITUDES ( N I N )  
T IME STEP 
P L O T   T I T L E   ( 1 2 )  
PLOT TITLE ( v j  
Y A X I S   T I T L E  (41 
ACTUAL S I Z E  06 STATE TRANSITION MATRIX 
ACTUAL NUMBER  OF POSSIBLE  INPUTS 
ACTUAL NUMBER OF POSSIBLE  OUTPUTS 
MAXIMUM S I Z E  OF  N 
MAXIMUM S I Z E  OF N I N  

NOUTMX MAXIMUM SIZE OF NOUT 
ITRMX NUMBER OF DESIRED  TIME RESPONSE POINTS 
I P  PLOT  ENTITY  INDEX  (USED  BY  PLOTSUBS  ONLY) 

INCREASES BY ONE FOR EACH FRAME 
NAME NAME OF  PLOT  DATASET 9 (USED  BY  PLOTSUBS  ONLY) 

IONPLT 0. I F  OFFLINE PLOTS 
(PARTITIONED  DATASET !I! H  T  HOLDS  PLOT E N T I T I E S )  

1; IF ONLINE -PLOTS- 

OUTPUTS : 

T I M E  VECTOR OF TIME  POINTS  ( ITRMX) 
(SINGLE  PRECISION) 

TYOUT  MATRIX OF OUTPUT TRANSIENT RESPONSES FOR ANY 
ONE SPECIFIC  INPUT  STEP (1TRMX.NOUT) 
(SINGLE  PRECISION) 

INCREASES  BY ONE  FOR EACH  FRAME 
I P  PLOT  ENTITY  INDEX (USED  BY  PLOTSUBS  ONLY) 
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TEMPORARY STORAGE : 

XNEW VECTOR N 
XOLD 

VECTOR {N/  ANR VECTOR N 
I E X T  INTEGER VECTOR (N)  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE UNRML (KC,  KE,  KFF, PP,  NC,  NM,  N, NCMAX,  NMAX, FL34) 

. ................................................................. 
SUBROUTINE UNRML I S  USED TO CONVERT NORMALIZED KC, KE, KFF, & PP 
MATRICES TO UN-NORMALIZED FORM. NORMALIZATION VECTOR INFORMATION 
I S  FED I N  THRU COMMON 'NORMS' OR I F  NECESSARY, READ I N  OFF U N I T  34 
AS  NAMELIST NRMS. I F  FL34 I S  .TRUE., I T  MEANS THAT NRMS HAS 
ALREADY  BEEN  READ I N  BY  SUBROUTINE NRML & THUS I T  SHOULDN'T B E  
READ I N  HERE. UNRML CALLS  SUBROUTINE  MATPRT. UNRML I S  CALLED  BY 
SUBROUTINE  AES400. 

I NPUTS : 

K C  
KE 
KFF 

PP 

NM 
NC 

N 
NCMAX 
NMAX 
FL34 

OUTPUTS : 

KC 
KE 
K F F  

PP 

F L34 

NORMALIZED CONTROL GAIN  MATRIX (NC,N) 
NORMALIZED  KALMAN FILTER  GAIN  MATRIX (N,NM) 
NORMALIZED  FEED FORWARD GAIN  MATRIX FOR 
NON-ZERO SET  POINT REGULATOR (NC,NC) 
NORMALIZED  KALMAN F I L T E R  ERROR COVARIANCE 
MATRIX (N,N) 
ACTUAL NUMBER OF CONTROL INPUTS 
ACTUAL NUMBER OF MEASUREMENTS 
ACTUAL NUMBER  OF STATES 
MAXIMUM S I Z E  OF NC 
MAXIMUM S I Z E  OF N~ 
LOGICAL  VARIABLE, ON INPUT 
TRUE, NORMALIZATION VECTOR INFORMATION 
(NAMELIST NRMS) HAS  ALREADY  BEEN  READ I N  
FALSE,  NORMALIZATION VECTOR INFORMATION 
(NAMELIST NRMS) NEEDS TO BE  READ I N  

UN-NORMALIZED  KALMAN FILTER  GAIN  MATRIX (N,NM) 
UN-NORMALIZED CONTROL GAIN  MATRIX (NC,N) 

UN-NORMALIZED  FEED FORWARD GAIN  MATRIX FOR 
NON-ZERO SET  POINT REGULATOR (NC,NC) 
UN-NORMALIZED  KALMAN F I L T E R  ERROR COVARIANCE 
MATRIX (N,N) 
LOGICAL  VARIABLE, ON OUTPUT SET TO 
TRUE I F  NORMALIZATION VECTOR INFORMATION 
(NAMELIST NRMS) HAS BEEN  READ I N  

. ................................................................. 

SUBROUTINE  UZR901 

. ................................................................. 
T H I S   I S  FOR A  USER-WRITTEN  ROUTINE 

................................................................. 
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SUBROUTINE  UZR902 

. ................................................................. 
T H I S   I S  FOR A  USER-WRITTEN  ROUTINE 

.................................................................. 

SUBROUTINE  UZR903 

.................................................................. 
T H I S   I S  FOR A  USER-WRITTEN  ROUTINE 

.................................................................. 

SUBROUTINE  UZR904 

. ................................................................. 
T H I S   I S  FOR A  USER-WRITTEN  ROUTINE 

.................................................................. 

SUBROUTINE ZEROES (AA, BB,  CC, DD, CONST,  ANR, ANI, N, 11, JJ, L, 
1 AR, TS, BR, LWV, MWV, ZERMAX, IA,   16,   IBL,   IC,  S ,   S S ,  NMAX, 
2 NOMAX) 

.................................................................. 
SUBROUTINE ZEROES F INDS THE NUMERATOR ZEROES OF THE  TRANSFER 

I 1  DENOTES DESIRED COMPONENT OF OUTPUT VECTOR 
FUNCTION Y(I1) / U(JJ) = CC * ( ( S  * I - A ) ** -1 ) * BB 

JJ DENOTES DESIRED COMPONENT OF INPUT VECTOR 
ZEROES CALLS  SUBROUTINES  CONDI,  EIGQR, HSBG,  AND  ARRAY. ZEROES I S  
CALLED  BY  SUBROUTINE  AES700. 

INPUTS: 

NMAX 
NOMAX 

OUTPUTS: 

AA 
BB 
cc 
DO 
CONST 
N 

JJ 
I 1  

ANR 
A N I  
L 
ZERMAX 

SYSTEM  MATRIX (N,N) 
INPUT  MATRIX (N,NUMBER  OF POSSIBLE  INPUTS) 
OUTPUT  MATRIX (NUMBER OF POSSIBLE 0UYPUTS.N) 
CONSTANT 
ITERATION CONSTANT 
ACTUAL S I Z E  OF MATRIX  AA 
OUTPUT COMPONENT 
INPUT COMPONENT 
MAXIMUM S I Z E  OF  N 
MAXIMUM NUMBER OF OUTPUTS 

VECTOR OF REAL  PARTS OF EIGENVALUES  (N) 
VECTOR OF IMAGINARY  PARTS OF EIGENVALUES ( N )  
NUMBER OF ZEROES 
MAXIMUM  EXPECTED  VALUE OF TRANSFER FUNCTION 
ZEROES 
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TEMPORARY  STORAGE: 

AR 
T S   M A T R I X   { N  N I  

MATRIX   N ,N  

BR  VECTOR  N) 
LWV 
MWV INTEGER  VECTOR \2 X N ]  

INTEGER  VECTOR 2 X  N 

I A  INTEGER  VECTOR 2 X  N 
I B  INTEGER  VECTOR 12 X N {  
I B L   I N T E G E R  VECTOR 2 X  N 

S MATRIX  N  N 
IC INTEGER  VECTOR \ 2  X  N]  

ss MATRIX  [N:N] 

................................................................. 
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Appendix C 
Test  Cases 

This  appendix  presents the results  of  two test cases. Test case I exercises almost all of  the 77 
available  AESOP  functions. Test case I1 shows how AESOP  can be used in an interactive  manner to 
design a  control  system. 

Test  Case I - Third-Order  Problem to Demonstrate Full AESOP  Program  Capabilities 

A block diagram of the selected third-order,  open-loop  plant is shown  in  figure 14. The  plant is 
characterized by three  states, two controls,  one noisy measurement,  two  plant-noise  disturbances, 
two outputs,  and  two  set-point  variables.  The  plant is stable with one  real pole at 0.1 rad/sec  and a 
complex pole  pair with a natural  frequency  of 1 .O rad/sec and a damping  ratio  of 0.001. The  com- 
putations  performed do  not  all  relate to one specific design problem  but are  done so as to exercise all 
of the AESOP functions.  For  example,  frequency responses are  computed  for a system with perfect 
state  measurement (xI,x~,x~) and  state  feedback  as well as  for Kalman  filter  feedback using a single 
noisy measurement, 21. 

The  input  matrices  for  test case I are  generated by function 201 and  are listed in  table V. They 
include  the  plant  matrices A, B, C, D, CSP, H, and DOUT as weli as  quadratic weighting matrices 
QC, NN, and PCINV and noise matrices QQ and RRINV. The  test case exercises the  AESOP 
functions shown in  table XI. 

Pages 65 to 80 are  the  terminal  printout  sheets  produced at  the user’s terminal.  Notes have been 
added to indicate what results  are being generated and displayed. In the  pocket at  the  rear of this 
report  are  microfiche copies of the  output  dataset  and  plots  generated  for  this test case. The  output 
dataset  contains  the  complete  results  generated by the  AESOP  run,  including  results  that were 
printed  out at  the user’s terminal.  The CPU time  required to run  this test case on  an IBM 370/3033 is 
approximately 30 to 40 seconds  depending on which device was used to produce  graphic  output. 

state vector -@: control vector - ; measurement -zl 

Plant noise  vector - ; measurement  noise = v1 

Output vector (2); set-point  vector - yspl 
(YJ 

Figure 14. -Block diagram of third-order system used for test case I. 
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TABLE X I .  - TASKS PERFORMED I N  TEST CASE I 

Design  task performed i Page n u m b e r ,  
appendix C 

Open-loop analyses 

Kalman f i l t e r  gains and associated e r r o r  checks 
Optimal r e g u l a t o r   g a i n s  and assoc ia ted  e r r o r  checks 

Frequency responses (and Bode p l o t s )  
S t a t e  covar iance  matr ices and feedforward m a t r i x  

Trans ien t  responses (and p l o t s )  
Trans fer  funct ion gain and ze ros  

Repeat o f  t a s k s  2 and 3 w i t h  normalized m a t r i c e s  
System m a t r i x  normal iza t ion  

Unnormalization o f  r e s u l t a n t  m a t r i c e s  

Terminal  Printout for Test  Case I 

68 

70 
68 

72 
72 

74 
76 
77 
79 
79 

-User invokes PROCDEF  AESRUN to   begin  run 

PRINTER 

AESOP 
DO YOU WISH TO MAKE  PLOTS,  Y OR N? 

" J s e r   c a l l s  the AESOP program 
" 
ENTER  THE  PLOT NAME - 8 ALPHANUMERIC  CHARACTERS 
LUCYTEST 
DO YOU WISH TO MAKE  ONLINE  PLOTS,  Y OR N? 
M 
DEC 2 .   1 9 8 2  
ENTER  TODAY'S  DATE  (LESS  THAN OR EQUAL TO 2 0  CHARACTERS) 

ENTER  THE  PARAMETER  YOU  USED FOR AESRUN 
1 
EXTENDED  TERMINAL  OUTPUT? 
Y 
READ I N   N 1  FROM STORAGE? 

-User requests maximum amount of  data  to  be  displayed  at   terminal 
Y 
DDEF 2 1  TO THE N1 DATASET -user e l e c t s   t o  have the IFN function number s t r ing   r ead   i n  from storage 

DDEF  FT21FOOl,VS,DEC80 -User da tadefs  "dec80". the  dataset   containing  the NAMELIST N1 fo r   t he  

GO 

PROCEEDING:  PAUSE . PROGRAM W I L L  PROCEED I F  -RUN COMMAND ISSUED.  

t e s t   ca se ,   t o   un i t  21. "Go" causes  program  to  continue 
PROCEEDING(PCS):  EXECUTION  CONTINUES  AT  CHCRWC.(X'4CD4') 
I N 1  
I F N  = 
810 3 0 2  811 3 0 3   8 1 2   8 1 3  814 8 1 5   8 1 6   8 1 7   8 1 8   8 1 9   8 2 0   5 0 1  502 
5 0 3  504 5 0 5   5 0 6  507 5 0 8   5 0 9   5 1 0   5 1 1   5 1 2   5 1 3   5 1 4   5 1 5   5 1 6  517 
5 1 8   5 1 9   5 2 0   5 2 1   5 2 2   5 2 3   5 2 4   5 2 5   6 0 1   6 0 2   6 0 3  6 0 4  7 0 1   7 0 2   7 0 3  
7 0 4   7 0 5   2 1 0  404 8 0 1   3 0 1   8 0 9   8 1 9  405 9 9 9  0 
LEND 

io1 2 0 1  $01 4 0 2  4 0 3  8 0 1  802 3 0 1   8 0 3  804 8 0 5  806 8 0 7  808 a 0 9  

CHANGES TO REFS 
FUNCTION 1 0 1  -Function 101 requested  to  demonstrate  procedure  for  changing 

DISPLAY  REFS  BEFORE  MAKING  CHANGES? 
Y 
&REFS 
TSFTR: 1 . 0  

a "reference"  parameter  (in NAMELIST 'REFS') 

D f = - 0 . 5 6 D i 0 1  
F I -   0 . 1 0 D - 0 1  

ZERMAX: 1 0 0 . 0  
DELFZ  0 .20D-01  

AMPSP: 5 X 1 . 0  
AMPSR: 5W1.0 
AMPICX:  50Wl.O 
I F =   4 9  
ISPACE: 1 
I O U T -  1 

J I N C -  1 
IMEAS-  1 

JIND: 1 

NCURVZ 7 
ITRMX"  1 0 0  

65 



MSROLX' 250Ml 
MICCLY: 25OOWl 
MICCLX= 2500x1 
MICCLU: 250Wl 
MICOLY' 2500Wl 
MICOLX: 25003fl 
&END 
ENTER  CHANGES TO NAMELIST  REFS  (TSFTR,  DT, FI, DELF.  ZERKAX AMPSP, AMPSR, 
A M P I C X ,   I F ,   I S P A C E ,   I O U T ,   I M E A S .   J I N C ,   J I N D .   I T R N X ,  NCURV, i I N L O G .  MSPY, 
MSPYSP. MSPU, MSROLY. MSROLX, MICCLY. MICCLX. MICCLU, n I c o L y ,  MICOLX) 

TSFTR: 1.0 

LREFS  ZERMAX=500.0DO  LEND 
&REFS - Parameter ZERMAX increased from 100 to 500 

DT=.0.50D:Ol 

DELFZ 0.20D-01 
FI: 0 . 1 0 D - 0 1  

ZERMAXZ 5 0 0 . 0  
AMPSP' 5 x 1 .  0 
AMPSR- 5r1.0 
AMPICX: 50%1.0 

ISPACE-  1 
IF: 4 9  

IMEAS: 1 
IOUT-  1 

JINC: 1 
J I N D -  1 
ITRMX' 100 
NCURV' 2 
LINLOG: 3 
PISPY: 250Wl 

MSPU: 2 5 x 1  
MSPYSP: 25x1 

MSROLY' 250x1 
MSROLX: 2 5 0 X l  
MICCLY"  2500Wl 
MICCLX: 2500x1 
MICCLUZ 2 5 0 x 1  

MICOLX: 25OOX1 
hEND 
ARE  THERE ANYMORE CHANGES, Y OR ti? 

r u c o L Y -  2500x1 

N 

A= 

1 
2 
3 

B =  

2 
1 

3 

D= 

1 
2 
3 

C= 

2 
1 

ti= 

1 

FUNCTION 2 0 1  
PUT I N  THE  3RD ORDER TEST  CASE  MATRICES  BY  USING  SUBROUTINE  MATIN 

X Y X Y Y W  INPUT  MATRICES I W X I % Y  -Function  that forms a l l  required  matrices  for running the  test   case 

1 2 3 

- 0 . 1 0 0 0 D   0 0  1 . 0 0 0  
0 . 0 0 0 0  0 . 0 0 0 0  

0.0000 
1.000 

0.0000 -1.000 - 0 . 2 0 0 0 D - 0 2  

1 

0. 0000 
0.0000 

1.000 

1 

0 . 0 0 0 0  
0.0000 

1 . 0 0 0  

1 

1.000 
0.0000 

1 

1 . 0 0 0  

2 

0.0000 

0.0000 
1.000 

2 

0 . 0 0 0 0  

0 . 0 0 0 0  
1.000 

2 3 

0.0000 
0 . 0 0 0 0  

0 . 0 0 0 0  
1.000 

2 3 

0 . 0 0 0 0   0 . 0 0 0 0  

66 



DOUT= 

1 2 

2 0.0000 
1 0.0000 0.0000 

1.000 

c s p =  

1 2 

1 1 . 0 0 0  0.0000 
2 0.0000 0.0000 

PC= 

3 

0.0000 
2.000 

1 2 3 

1 2 0 . 0 0  
2 0.0000 

0.0000 
1.000 

0.0000 

3 0.0000 
0.0000 

0.0000 10.00 

1 2 

2 0.0000 
1 1 . 0 0 0  0.0000 

3 2.000 0.0000 
3.000 

PCINV= 

1 2 

2 0.0000 
1 1 . 0 0 0  0.0000 

O.1OOOD 00 

99:  

1 2 3 

1 0.0000 
2 0.0000 

0.0000 0.0000 
2 . 0 0 0  0.0000 

3 0.0000 0.0000 20.00 

RRINV: 

1 

1 1.000 

LXEFS 

D T =  0 .50D-01  
TSFTR: 1 . 0  

DELF- 0 .20D-01  
F I =   0 . 1 0 D - 0 1  

ZERMAX- 500.0 
AMPSP- 5 W l .  0 
AMPSR: 5W1.0 
AMPICXI  5OWl.O 

ISPACE- 1 
I F =  4 9  

IOUT: 1 
IMEAS- 1 
JINC: 1 
JINDZ 1 

NCURV- 2 
ITRMX- 1 0 0  

LINLOG- 3 
MSPY= 250Wl 
MSPYSPZ 2 5 x 1  

MSROLY: 2 5 0 x 1  
IISROLX: 250Wl 
MICCLYr 25oowl  
MICCLX- 2 5 0 0 w l  

MICOLY-  2500Wl 

ZEND 

nspu: 25361 

n I c c L u =   2 5 0 x 1  

n I c o L x :   2 5 0 0 x 1  
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FUNCTION 401 
OPEN  LOOP SYSTEM  EIGENVALUES 

The  following three functions  perform  analyses  on the 
open-loop system: 

Y Y Y Y  MATRIX I S  FOUND TO BE  REDUCIBLE NYWY 

EIGENVALUES 

NAT FREQ (HZ)  ZETA 

0 . 1 5 9 2  
0 . 1 5 9 2 D - 0 1  1 . 0 0 0  

0 . 1 0 0 0 D - 0 2  

OPEN  LOOP EIGENVECTORS AND MODE SHAPES 
FUNCTION 4 0 2  

MODIFIED  EIGENVECTOR  MATRIX OF A 

1 2  3 

2 - 1 . 0 0 1  
1 - 1 . 0 8 7   - 0 . 8 9 3 3  

0 . 9 9 9 0  
1 . 0 0 0  

0 . 0 0 0 0  
3 1 . 0 0 0   1 . 0 0 0  0 . 0 0 0 0  

THE  MATRIX OF MODE SHAPES I N  MAG. AND ANGLECDEG.) FORM 

t For complex  pair at 0.1592 HZ 
' 1  2 '  3 

2 1 . 0 0 0 0  
1 0 . 9 9 5 1   - 1 7 4 . 4  1 . 0 0 0  

- 9 0 . 0 6  0 . 0 0 0 0  
3   1 . 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  

t Magnitudes  Phase angles,  deg 

FUNCTION  403  
OPEN  LOOP SYSTEM  ANALYSIS  CALCULATIONS 

SYSTEM  CONTROLABILITY 

1 2 

2   0 . 5 7 3 0 D - 0 1  9 0 . 0 0 >  
1 0 . 5 0 0 0  0 . 5 0 0 0  For complex  eigenvalue  pair 
3 0 . 9 9 0 3  - 0 . 9 7 0 5 D - 0 1  

SYSTEM  OBSERVABILITY FOR ( A  AND H)  

1 2  3 

1 0 . 9 9 5 1   1 7 4 . 4  1 . 0 0 0  

SYSTEM  OBSERVABILITY FOR ( A  AND C) 

1 2  3 

2   1 . 0 0 0  
1 0 . 9 9 5 1  

0 . 0 0 0 0  
1 7 4 . 4  1.000 

0 . 0 0 0 0  

RESIDUES FOR (A,  B, H) SYSTEM 
RESIDUES FOR ( A ,  B, C )  SYSTEM 

FUNCTION 8 0 1  
DESIGN A LINEAR  QUADRATIC  REGULATOR 

-Beginning of Riccati  equation  solution  for LQR problem 

EIGENVALUES OF REGULATOR OR F I L T E R   I N   F N I Z E T A  FORM 
NAT FREQ (HZ) ZETA 

0 . 2 3 8 2  
0 . 4 5 1 9  

0 . 7 1 1 6  
1 . 0 0 0  

ss = 

I 2 3 

1 1 9 . 2 4  
2 1 0 . 4 2  

1 0 . 4 2   1 . 3 0 1  
9 . 2 0 3  

3 1 . 3 0 1  1 . a 1 9  
1 . 8 1 9  
1 . 6 4 7  
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KC = 

1 2 3 

2  1.042 
1 2.301  1.819 

1.220 
3.647 

0.1819 

FUNCTION a 0 2  
STORE  OPTIMAL CONTROL G A I N S   ( K C )  ON U N I T  0 8 .  

FUNCTION 3 0 1  
FORM A-BKC  MATRIX 

FUNCTION 8 0 3  
EIGENVALUES OF SYSTEM  WITH  STATE  FEEDBACK 

EIGENVALUES 

NAT  FREP (HZ1 ZETA 

0.2382 
0.4519 

0 . 7 1 1 6  
1.000 

FUNCTION 804 
EIGENVECTORS AND MODE SHAPES  WITH  STATE  FEEDBACK 

MODIFIED  EIGENVECTOR  MATRIX OF  AMBKC 

1  2 3 

2  1.000 
1 -0.9899 0 . 4 2 4 6 D - 0 1  0.1494 

3 0.2144 -1.042 
1 . 0 0 0  -0.4092 

1.000 

THE  MATRIX OF MODE SHAPES I N  MAG.  AND ANGLECDEG.) FORM 

1 2 3 

2 1.000 
1 0 . 7 0 0 6  -132.5 

0 . 0 0 0 0  -0.4092 
0.1494 

3 0.7519  123.4  1.000 - Beginning of error  checks for the  Riccati  solution  matrix 

FUNCTION 8 0 5  
P O S I T I V E   D E F I N I T E N E S S  CHECK  OF  CONTROL RICCATI   SOLUTION  MATRIX ,  55  

EIGENVALUES 

NAT  FREQ  (HZ)  ZETA 

0.1642 
0.4929 Negative r indicates that eigenvalues  all  have  positive  real parts; 

4 . 1 3 3   - 1 . 0 0 0  therefore SS is positive-definite 

FUNCTION 806 
SYMNETRY  CHECK  OF  CONTROL RICCATI   SOLUTIOH  MATRIX .  SS 

MAX.  SYMMETRY  ERROR I N  SS = -3.2429E-15 
AVG.  ABSOLUTE  SYMMETRY  ERROR I N  S S  = 1.7184E-15 
SYMMETRY  ERROR I N  SS = 

1 2 3 

1 0.0000 
2 -0.4475D-15 0.0000 

0.0000 0 . 0 0 0 0  

3 -0 .32431) -14  - 0 . 1 4 6 5 D - 1 4  0 . 0 0 0 0  
0 . 0 0 0 0  

FUNCTION 807 
RESIDUAL ERROR  CHECK OF SS 

MAX. RESIDUAL,   R(  1. 2)= - 0 . 2 8 4 2 D - 1 3  

-0.2977D-13 
TRACE OF RESIDUAL = 
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RESIDUAL ERROR MATRIX  FOR  CONTROL R I C C A T I   E Q U A T I O N  

1  2  3 

1  -0.1421D-13 -0.2842D-13 -0.1577D-13 The residual remaining upon substitution  of   solution 
2 -0.1754~-13 -0.16220-13 -o.a438~-14 
3  -0.8882D-15  0.4441D-15 0.6661D-15 matrix SS back into  the  original  Rlccati   equation 

FUNCTION a m  
STORE CONTROL R I C C A T I   S O L U T I O N   M A T R I X  ( S S )  ON U N I T  16 

-Beginning  of  Riccati  equation  solution  for Kalman f i l t e r  problem 

DESIGN  A  KALMAN  F ILTER 
FUNCTION a09 

EIGENVALUES  OF  REGULATOR OR F I L T E R   I N   F N I Z E T A  FORM 
NAT FREQ (HZ)   ZETA 

0.2202 1.000 
0.2862 0.4451 

PP = 

1 2 

4.442 
11.76 
1.865 

3 

8.865 
18.37 

1.462 

1 

STORE  KALMAN  F ILTER  GAINS  (KE)  ON U N I T  09 
FUNCTION 810 

FUNCTION 302 
FORM A-BKC-KEH  MATRIX 

FUNCTION a11 
EIGENVALUES OF OPTIMAL  CONTROLLER  A-BKC-KEH 

EIGENVALUES 

NAT FREQ (HZ)   ZETA 

0.6057 1.000 
0.5366 0.6000 

FUNCTION 303 
FORM ATOT,  CTOT. DTOT, KCTOT.  AND  HTOT  MATRICES 
FOR OPTIMAL CONTROL SYSTEM U I T H  KALMAN  F ILTER I N  FEEDBACK LOOP 

1 2 3 4 5 6 

1 - 0 . 1 0 0 0 D  00 1.000 0.0000 0.0000 0.0000 
2 0.0000 0.0000 

0.0000 

3 0.0000 
1.000  -1.042  -1.220 -11.1619 

-1.000  -0.2000D-02  -2.301 -1.819 
0.0000 

-3.647 
-2.982 

5 4.442 0.0000 
6 1.482 

0.0000 -5.484 
0.0000 0.0000 -3.783  -2.819  -3.649 

-1.220 ' 0.8181 
4 2.862 0.0000 1.000 0.0000 

CTOT = 

1 2 3 4 5 6 

1 1.000 
2 0.0000 

0.0000 0.0000 
0.0000 

0.0000 
1.000 

0.0000 
-1.042 

0.0000 
-1.220  -0.1819 
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OTOT = 

1 2 

2 0 . 0 0 0 0  
1 0 . 0 0 0 0  

3 1 . 0 0 0  
4 0 . 0 0 0 0  
5 0 . 0 0 0 0  
6 0 . 0 0 0 0  

KCTOT 

1 

2   0 . 0 0 0 0  
1 0 . 0 0 0 0  

HTOT f 

1 

1 1 . 0 0 0  

0 . 0 0 0 0  
1 . 0 0 0  

0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  

2 3 

0 . 0 0 0 0  0 . 0 0 0 0  
0 . 0 0 0 0  0 . 0 0 0 0  

4 5 6 

- 2 . 3 0 1   - 1 . 1 1 9  
- 1 . 0 4 2  

- 3 . 6 4 7  
- 1 . 2 2 0   - 0 . 1 8 1 9  

2 3 4 5 6 

0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0   0 . 0 0 0 0  0 . 0 0 0 0  

FUNCTION a 1 2  
EIGENVALUES  OF CONTROL SYSTEM  WITH  A  FILTER I N  THE  FEEDBACK  LOOP 

EIGENVALUES 

NAT FREQ ( H Z )  ZETA 

0 . 2 2 0 2  
0.2382 

0 . 4 5 1 9  
0 . 2 8 6 2  

0 . 7 1 1 6  
0 . 4 4 5 1  
1.00u 

1 . 0 0 0  These are  the  eigenvalues  of A - KE H 

These are  the  eigenvalues  of A - B e KC 

FUNCTION a 1 3  
-Beginning of error  checks on Kalman filter  error  covariance  matrix 

P O S I T I V E   D E F I N I T E N E S S  CHECK OF ERROR COVARIANCE  MATRIX,  PP 

EIGENVALUES 

NAT FREQ (HZ)   ZETA 

0 . 1 1 0 3  

4 . 0 0 6  
1 . 1 3 8  

- 1 . 0 0 0  

- 1 . 0 0 0  
" a t r i x  PP i s  pos i t ive-def in i te  

FUNCTION a 1 4  
SYMMETRY  CHECK OF ERROR COVARIANCE MATRIX, PP 

MAX.  SYMMETRY ERROR I N  PP = - 2 . 9 9 6 2 E - 1 6  
AVG. ABSOLUTE SYMMETRY ERROR I H  PP = 1 . 6 6 6 7 E - 1 6  
SYMMETRY ERROR I N  PP = 

1 2 3 

1 0 . 0 0 0 0  
2 0 . 0 0 0 0  

0 . 0 0 0 0  
0 . 0 0 0 0  

0 . 0 0 0 0  

3 - 0 . 2 9 9 6 D - 1 5   0 . 2 0 0 4 D - 1 5  0 . 0 0 0 0  
0 . 0 0 0 0  

FUNCTION a 1 5  
RESIDUAL ERROR  CHECK OF  PP 

MAX.  RESIDUAL,  R( 2. 2)' - 0 . 1 1 5 5 D - 1 3  
TRACE  OF  RESIDUAL = 
- 0 . 2 2 6 5 D - 1 3  

RESIDUAL ERROR MATRIX FOR ESTIMATION  R ICCATI   EQUATION 

1 2 3 
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F U N C T I O N   8 1 6  
STORE ERROR COVARIANCE  MATRIX  (PP) ON U N I T  15 

COMPUTE  COVARIANCE  MATRICES FOR LINEAR  QUADRATIC  REGULATOR 
F U N C T I O N   8 1 7  

WITH  KALMAN  FILTER I N  FEEDBACK LOOP 

UU. CONTROL COVARIANCE  MATRIX 

1 2 

2 2 0 . 8 1  
1 4 1 . 4 2   2 0 . 8 1  

2 5 . 1 3  

XX. STATE  COVARIANCE  MATRIX 

1 2 3 

1 2 0 . 9 9   2 . 0 9 9  
2 2 . 0 9 9  

- 6 . 8 4 9  

3 - 6 . 8 4 9  
2 1 . 5 6   8 . 4 2 8  
8 . 4 2 8   2 4 . 2 6  

YY. OUTPUT  COVARIANCE  MATRIX 

1 2 

1 2 0 . 9 9  - 2 1 . 3 5  
2 - 2 1 . 3 5  6 5 . 6 7  

ZZ, MEASUREMENT  COVARIANCE  MATRIX 

1 

1 2 0 . 9 9  

FUNCTION 818 
LYAPUNOV ERROR CHECK FOR F U N C T I O N   8 1 7  - Computes error  incurred  in  calculating  state  covariance  matrix xx 
THE T R A C E  OF THE RESIDUAL" 0 . 6 5 1 4 8 ~ - 1 2  
NORMALIZED  DIAGONAL  ELEFIENTS OF THE ERROR MATRIX = 
- 0 . 6 4 9 7 0 D - 1 5   0 . 6 3 0 5 1 D - 1 5 - 0 . 4 0 6 1 7 D - 1 4  

THE  TRACE OF THE  COVARIANCE=  66.806 
THE  TRACE OF THE  ERROR"0.98575D-13 

TR(ERROR)/TR(COV.)   =-0.14755D-14 

FUNCTION  819  
FORM FEED FORWARD MATRIX FOR NOH-ZERO  SET  POINT CONTROL 

K F F  = 

1 2 

F U N C T I O N   8 2 0  
STORE  FEED FORWARD MATRIX   (KFF)  ON U N I T   1 7  

q- Beginning of frequency  response  and  Bode  plot  computation 

FUNCTION 5 0 1  
OPEN LOOP FREQUENCY  RESPONSE OF MEASUREMENT 1 TO CONTROL I N P U T  1 

NUMERATOR COEFFICIENTS 

- 0 . 1 2 0 8 9 D - l 6 * S Y Y  2 0 . 1 0 2 0 0  W S W W  2 
1 . 0 0 0 0  wsrx 3 

1 . 0 0 0 2  *sww 1 
0 . 1 0 0 0 0 D  O O W S W W  0 

0 . 0 0 0 0 0  WSYY 3 

0 . 0 0 0 0 0  rswx 1 
1 . 0 0 0 0  Y S Y Y  0 

DENOMINATOR  COEFFICIENTS 
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I 1  111 I I 1 1 1 1  I 

PLOT OPEN  LOOP  FREQ.  RESPONSE  OF  MEASUREMENT TO CONTROL I N P U T  
FUNCTION 502 

GRAPHICS  DEVICE  NOT  DEFINED  BY  DDEF. 
ENTER U N I T  NAPIE. DEFAULT TO CANCEL. 

Z E T A 1 2  
PLOT IDENTIFICATION = PELUCY** 02 DEC 1 9 8 2  a 0 8 : 0 6 : 1 a  

-User s p e c i f i e s  ZETA p l o t t e r  to be  used for plot t ing  

F U N C T I O N   5 0 3  
STORE  OPEN  LOOP  FREQ.  RESPONSE  OF  MEASUREMENT TO CONTROL I N P U T  ON U N I T   1 0  

FUNCTION 504 
OPEN  LOOP  FREQUENCY  RESPONSE OF OUTPUT 1 TO CONTROL I N P U T  1 

NUMERATOR COEFFICIENTS 

- 0 . 1 2 0 8 9 D - l 6 * S * *  2 0 . 1 0 2 0 0  * S * *  2 
1 . 0 0 0 0  x s * *  3 

1 . 0 0 0 2  *s * *  1 
0 . 1 0 0 0 0 D  O O * S X *  0 

0 . 0 0 0 0 0  *s** 3 

0 . 0 0 0 0 0  *s**  1 
1 . 0 0 0 0  *sw* 0 

DENOMINATOR  COEFFICIENTS 

FUNCTION  505  
PLOT OPEN  LOOP  FREQ.  RESPONSE OF OUTPUT TO CONTROL I N P U T  

FUNCTION  506  
STORE  OPEN  LOOP  FREQ.  RESPONSE OF OUTPUT TO CONTROL I N P U T  ON U N I T   1 1  

FUNCTION 507 
OPEN  LOOP  FREQUENCY  RESPONSE O F  MEASUREMENT 1 T O  DISTURBANCE  INPUT 1 

NUMERATOR COEFFICIENTS  DENOMINATOR  COEFFICIENTS 
0 . 0 0 0 0 0  * S * *  3   1 . 0 0 0 0  *s*r 3 

- 0 . 1 2 0 8 9 D - l 6 * S * X  2 0 . 1 0 2 0 0  * s * *  2 
0 . 0 0 0 0 0  * s * *  1 

1 . 0 0 0 0  *s**  0 0 . 1 0 0 0 0 D  OOrS** 0 
1 . 0 0 0 2  Y S * *  1 

FUNCTION 508 
PLOT  OPEN  LOOP  FREQ.  RESPONSE OF MEASUREMENT TO DISTURBANCE  INPUT 

FUNCTION  509  
STORE OPEN  LOOP FREQ.  RESPONSE  OF  MEASUREMENT TO DISTURBANCE  INPUT ON U N I T   1 2  

FUNCTION  510  
OPEN LOOP FREQUENCY  RESPONSE OF OUTPUT 1 TO DISTURBANCE  INPUT 1 

NUMERATOR COEFFICIENTS  DENOMINATOR  COEFFICIENTS 
0 . 0 0 0 0 0  *s*n 3 1 . 0 0 0 0  * s * *  3 

- 0 . 1 2 0 8 9 D - l 6 * S * %   2   0 . 1 0 2 0 0  *s** 2 
0.00000 * S * *  1 

1 . 0 0 0 0  * S * *  0 0 . 1 0 0 0 0 D  OO*S**  0 
1 . 0 0 0 2  *s*w 1 

PLOT OPEN  LOOP FREQ.  RESPONSE  OF  OUTPUT TO D I S T U R B A N C E   I N P U l  
F U N C T I O N   5 1 1  

F U N C T I O N   5 1 2  
STORE  OPEN  LOOP  FREQ.  RESPONSE OF OUTPUT TO DISTURBANCE  INPUT ON U N I T   1 3  

F U N C T I O N   5 1 3  
CLOSED LOOP FREQUENCY  RESPONSE OF OUTPUT 1 TO  DISTURBANCE  INPUT 1 
FOR STATE  FEEDBACK 

NUMERATOR COEFFICIENTS 
8 . 0 0 0 0 0  * s * *  3 

DENOMINATOR  COEFFICIENTS 
1 . 0 0 0 0  * S Y *  3 

-0.22204D-15*;** 2 
- 0 . 2 2 2 0 4 D - l 5 * S * x  1 

. . . . . . . 

0.81alo K S X W  o 

""" 

4 . 9 6 9 3  *S* *  2 

6 . 3 6 0 4  *S* *  0 

" 

8.2882 *s**  1 

FUNCTION 514 
PLOT  CLOSED  LOOP  FREQ.  RESPONSE OF OUTPUT TO DISTURBANCE  INPUT 
FOR STATE  FEEDBACK 
(PLUS  THE  CORRESPONDING  OPEN  LOOP  RESPONSE, I F  DESIRED)  

FUNCTION 515 
CLOSED  LOOP  FREQUENCY  RESPONSE  OF  CONTROL 1 TO DISTURBANCE  INPUT 1 
FOR STATE  FEEDBACK 

NUMERATOR COEFFICIENTS 
0 . 0 0 0 0 0  * S * *  3 1 . 0 0 0 0  *S**  3 
- 3 . 6 4 7 0  *S*W 2 4 . 9 6 9 3  * S X *  2 

DENOMINATOR  COEFFICIENTS 

- 6 . 3 0 3 4  XSWW 1 
- 6 . 2 7 6 3  *S** 0 
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FUNCTION 5 1 6  
PLOT  CLOSED  LOOP  FREQ.  RESPONSE  OF  CONTROI  TO  DISTURBANCE  INPUT 
FOR STATE  FEEDBACK 

FUNCTION 5 1 7  
CLOSED LOOP FREQUENCY  RESPONSE  OF  MEASUREMENT 1 TO DISTURBANCE  INPUT 1 
FOR CONTROL SYSTEM  WITH A F I L T E R   I N  THE  FEEDBACK  LOOP 

NUMERATOR COEFFICIENTS 
0 . 0 0 0 0 0  Y S Y Y  6 

DENOMINATOR  COEFFICIENTS 
1 . 0 0 0 0  Y S X Y  6 

0 . 0 0 0 0 0  W I W W  4 
- . - - - . - 

1 . 0 0 0 0  YSWW 3 
7 . 8 5 1 6  rSw* 2 
2 6 . 7 6 4  X S r Y  1 
4 3 . 2 6 3  *S*W 0 

2 8 . 5 6 6  Y S Y Y  4 
6 2 . 6 3 9  *S*X  3 

. ..." 

FUNCTION 5 1 8  
PLOT  CLOSED  LOOP  FREQ.  RESPONSE  OF  MEASUREMENT  TO  DISTURBANCE  INPUT 
FOR CONTROL SYSTEM U I T H   F I L T E R   I N  FEEDBACK  LOOP 
(PLUS  THE  CORRESPONDING  OPEN LOOP RESPONSE, I F  DESIRED)  

CLOSED  LOOP  FREQUENCY  RESPONSE  OF  OUTPUT 1 TO DISTURBANCE  INPUT 1 
FUNCTION 5 1 9  

FOR  CONTROL SYSTEM  WITH A F I L T E R   I N  THE  FEEDBACK LOOP 

NUMERATOR COEFFICIENTS 
0 . 0 0 0 0 0  Y S Y Y  d 

DENOMINATOR  COEFFICIENTS 
1 . 0 0 0 0  X S Y X  6 

0 . 0 0 0 0 0  W S Y X  5 
0 . 0 0 0 0 0  rsrr  4 

7 . 8 5 1 6  X S * *  2 
1 . 0 0 0 0  ws** 3 

2 6 . 7 6 4  W S X X  1 
4 3 . 2 6 3  Y S X X  0 

7 . 9 5 3 6  rSrw 5 
2 8 . 5 6 6  Y S w w  4 

8 6 . 3 6 2  Y S Y Y  2 
6 2 . 6 3 9  X S X X  3 

7 1 . 7 2 5  Y S X Y  1 
2 8 . 4 5 2  XSWX 0 

PLOT  CLOSED LOOP FREQ.  RESPONSE OF OUTPUT TO DISTURBANCE  INPUT 
FUNCTION  520 

FOR CONTROL SYSTEM  WITH  FILTER I N  FEEDBACK LOOP 
(PLUS  THE  CORRESPONDING OPEN  LOOP  RESPONSE, I F  DESIRED)  

FUNCTION  521 
CLOSED LOOP FREQUENCY  RESPONSE OF CONTROL 1 TO DISTURBANCE  INPUT 1 
FOR  CONTROL SYSTEM  WITH A F I L T E R   I N  THE  FEEDBACK  LOOP 

NUMERATOR C O E F F I C I E N T S  

-0.44409D-15YSxX 5 
0 . 0 0 0 0 0  Y S Y X  6 

-0 .13323D-14XSxr  4 
- 0 . 3 9 9 6 8 D - l 4 * S * *  3 

DENOMINATOR  COEFFICIENTS 
1 . 0 0 0 0  Y S Y X  6 
7 . 9 5 3 6  US** 5 

62 .63 '1  Y S X Y  3 
2 8 . 5 6 6  Y S X Y  4 

- 2 0 . 1 1 7  sS*Y 2 8 6 . 3 6 2   * 5 x *  2 
- 6 . 8 3 1 5  rSr* 1 
- 2 4 . 0 8 8  Y S w X  0 2 8 . 4 5 2  * S X *  0 

7 1 . 7 2 5  XSWX 1 

FUNCTION  522  
PLOT  CLOSED LOOP FREQ.  RESPONSE  OF  CONTROL TO DISTURBANCE  INPUT 
FOR  CONTROL SYSTEM  WITH  F ILTER I N  FEEDBACK  LOOP 

FUNCTION 5 2 3  
FREQUENCY RESPONSE OF  CONTROL 

FOR OPTIMAL  CONTROLLER 

NUMERATOR C O E F F I C I E N T S  
0 . 0 0 0 0 0  Y S W Y  3 
- 2 0 . 1 1 7  YSWY 2 

- 2 4 . 0 8 8  YSNY 0 
- 6 . 8 3 1 5  XSWW 1 

FUNCTION 5 2 4  
PLOT  FREQ.  RESPONSE OF  CONTROL 
FOR OPTIMAL  CONTROLLER 

1 TO MEASUREMENT 1 

DENOMINATOR  COEFFICIENTS 
1 . 0 0 0 0  * S * *  3 
7 . 8 5 1 6  W S X Y  2 
2 6 . 7 6 4  Y S % X  1 
t 3 . 2 6 3  X S Y Y  0 

TO MEASUREMENT 

FUNCTION 525 
STORE  FREQ.  RESPONSE  OF  CONTROL  TO  MEASUREMENT 
FOR OPTIMAL  CONTROLLER ON U N I T  1 4  

--&ginning of transient  response  calculations and plots 
FUNCTION 6 0 1  
OBTAIN AND  PLOT  SELECTED  OPEN  LOOP  STEP  RESPONSES 

S T A T E   T R A N S I T I O N   M A T R I X  FOR  OPEN  LOOP  SYSTEM FOR T I M E   S T E P  = 0 . 5 0 0 0 D - 0 1  
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1  2  3 

1 0.9950 0.4985D-01 0.1248D-02 
2 0 . 0 0 0 0  0.9938 
3 0.0000 -0.49980-01 0.9987 

0.4993D-01 

FORCED  RESPONSE  MATRIX OF OPEN LOOP SYSTEM FOR T IME  STEP -0.50000-01 

1 2 3 

1 0.49a8~-01 O . ~ Z ~ ~ D - O Z  0 . 2 0 8 0 D - 0 4  
2 0 . 0 0 0 0  
3 0.0000 -0.1250D-02  0.4998D-01 

0.4998D-01  0.125OD-02 

FUNCTION 602 
O B T A I N   A N 0   P L O T   S E L E C T E D   I N I T I A L   C O N D I T I O N  RESPONSES FOR THE  OPEN  LOOP  SYSTEM 

STATE  TRANSIT ION  MATRIX  FOR  OPEN  LOOP  SYSTEM  FOR T IME  STEP -0.5000D-01 

1  2  3 

2 0.0000 
1  0.9950 0.49a5~-01  0.1248~-02 

0.9988 
3 0.0000 -0.49980-01  0.9987 

0.4998D-01 

FORCED  RESPONSE  MATRIX OF  OPEN  LOOP SYSTEM FOR T IME  STEP =0.5000D-01 

1  2  3 

1  0.4988D-01 0.124813-02 0.2080D-04 
2 0.0000 
3 0.0000 -0.1250D-02 0.499SD-01 

0.4998D-01  0.1250D-02 

O B T A I N  AND PLOT  SELECTED I N I T I A L   C O N D I T I O N  RESPONSES 
FUNCTION 603 

FOR THE  CLOSED  LOOP  LINEAR  REGULATOR 

STATE  TRANSITION  MATRIX  OF  LINEAR  REGULATOR FOR T IME  STEP 0.5000D-01 

1  2  3 

2 -0.5251D-01  0.9369 
1 0.9937 0.4832D-01  0.9413D-03 

0.3619D-01 
3 -0.1014  -0.1273  0.8307 

FORCED  RESPONSE  MATRIX  OF  LINEAR  REGULATOR FOR T IME  STEP 0.5OOOD-01 

1  2  3 

1 0.49850-01 0.1222D-02 0.1602D-04 
2  -0.1310D-02 0.4844D-01 O.9429D-03 
3  -0.2645D-02 -0.3294D-02 0.4566D-01 

FUNCTION 604 
O B T A I N  AND  PLOT  SELECTED  STEP  RESPONSES 
FOR THE  NON-ZERO  SET  POINT  LINEAR  REGULATOR 

.STATE  TRANSITION  MATRIX  OF  LINEAR  REGULATOR FOR T IME  STEP 0.50000-01 

1 2 3 

1 0.9937 0.48321)-01 0.94130-03 
2 -0.52510-01 0.9369 
3 -0.1014 -0.1273 

0.3619D-01 
o .a307 

FORCE0  RESPONSE  MATRIX  OF  LINEAR  REGULATOR  FOR  TIME  STEP 0.5000D-01 

1  2 3 

1 0.49a5~-01 0.12220-02  0.16020-05 
2 -0.1310D-02 0.4844D-01 0.94290-03 
3 -0.2645D-02 -0.32940-02 0.4566D-01 
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- Beginning of transfer  function  gain and numerator zeros  calculation 
FUNCTION 7 0 1  
G A I N  AND ZEROES  OF  OPEN  LOOP  TRANSFER  FUNCTION 
RELATING MEASUREMENT 1 TO CONTROL I N P U T  1 

G A I N  = 1 . 0 0 0 0 0  
NUMBER OF  ZEROES = 0 
REAL  PARTS  OF NUMERATOR ZEROES 

1 

1 0 . 0 0 0 0  

IMAGINARY  PARTS  OF NUMERATOR ZEROES 

1 

1 0 . 0 0 0 0  

FUNCTION 7021 
G A I N  AND  ZEROES  OF  OPEN  LOOP  TRANSFER  FUNCTION 
RELATING OUTPUT 1 TO CONTROL INPUT 1 

G A I N  5 1 . O O U O O  

NUMBER OF  ZEROES = 0 
REAL  PARTS OF NUMERATOR ZEROES 

1 

1 0 . 0 0 0 0  

IMAGINARY  PARTS  OF NUMERATOR ZEROES 

1 

1 0 . 0 0 0 0  

FUNCTION 703 
G A I N  AND ZEROES  OF  OPEN 
RELATING MEASUREMENT 1 

G A I N  1 . 0 0 0 0 0  
NUMBER OF  ZEROES = 0 
REAL  PARTS  OF  NUMERATOR 

LOOP  TRANSFER  FUNCTION 
TO DISTURBANCE  INPUT 1 

ZEROES 

1 

1 0 . 0 0 0 0  

IMAGINARY  PARTS  OF  NUMERATOR  ZEROES 

1 

1 0 . 0 0 0 0  

G A I N  AND  ZEROES  OF  OPEN  LOOP  TRANSFER  FUNCTION 
FUNCTION 7 0 4  

RELATING  OUTPUT 1 TO  DISTURBANCE  INPUT 1 

G A I N  = 1 . 0 0 0 0 0  

REAL  PARTS  OF  NUMERATOR  ZEROES 
NUMBER OF  ZEROES = 0 

1 

1 0 . 0 0 0 0  

IMAGINARY  PARTS  OF NUMERATOR  ZEROES 

1 

1 0 . 0 0 0 0  
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F U N C T I O N   7 0 5  
G A I N  AND  ZEROES OF OPTIMAL  CONTROLLER  TRANSFER  FUNCTION 
RELATING CONTROL 1 T O  MEASUREMENT 1 

G A I N   2 0 . 1 1 7 0  
NUMBER OF ZEROES 2 
REAL  PARTS  OF NUMERATOR ZEROES 

1 

1 - 0 . 1 6 9 9  
2 - 0 . 1 6 9 9  

IMAGINARY  PARTS OF NUMERATOR  ZEROES 

1 

2 - 1 . 0 8 1  
1 1.oa1 

Beginning  of  series of functions that demonstrate (1) normalizing  of input matrices, - 
matrices,  and (4) unnormalizing KC,  KE,  KFF, and PP to show that results  are 
( 2 )  normalizing of control  weighting  matrices, (3) recomputing of KC, KE, and KIT 

FUNCTION  210 identical to prior  calculations 
CHANGE MATRICES A, B. C. D, H,  DOUT, CSP, QC, NN, PCINV,  QQ, OR RRINV AND !NY 
OR ALL  DIMENSIONS  BY  READING CHANGES I N  AT TERMINAL  USING  NAMELIST  'MATDAT 
DISPLAY  MATDAT  BEFORE  MAKING  CHANGCS? 
Y 
(MATDAT 
A: -0 . lOD0,   49W0.0 .   1 .0 .  0 . 0 .  - 1 . 0 ,  4 8 W 0 . 0 .  1 . 0 ,  -0.20D-02. 2397W0.0 

D= 2WO.O. 1 . 0 ,  48360.0, 1 .0 ,   698W0.0  
C= 1 .0 ,   100M0.0 ,   1 .0 ,   2398WO.O 

H Z   1 . 0 ,  249WO.O 
DOUT-  51W0.0,  1.0,  198WO.O 

QC= 20.0, 5 0 X 0 . 0 ,   1 . 0 .  5 0 W 0 . 0 ,  10.0,  2397WO.O 
CSP-   1 .0 ,  10WO.O. 2.0, 238WO.O 

NN= 1 . 0 ,  0 . 0 ,  2 . 0 .  4 8 W 0 . 0 ,  3.0.   198WO.O 
PCINVZ  1 .0 ,  5 W O . O .  0.10DO. 1SWO.O 
Q Q =  51WO.O. 2 .0 ,   50W0.0 ,  20.0. 2397WO.O 
R R I N V -   1 . 0 ,  24WO.O 
N= 3 
NM= 1 
NC= 2 
ND= 2 
N O =  2 
&END 
ENTER  MATDAT  CHANGES AS LMATDAT A ( 1 , 1 ) =  . ETC.  LEND 

B =  2 ~ 0 . 0 ,  1.0. 4axo.0, 1.0, 1 9 a ~ o . o  

a M b r n d r  -.  ._. . 1 1 1 ,  

QC(2.2)  9.ODO 
QC(1.1) = 500.ODO 
QC(3.3) 40.ODO 
P C I N V ( 1 , l )   1 . 5 6 2 5 D - 2  
P C I N V ( 2 . 2 )  = 1 . 2 3 4 5 6 7 9 D - 3  
N N ( 1 . 1 )  40.ODO 
N N ( 3 . 1 )  32.ODO 
N l i ( 2 . 2 )  = 8 1 . 0 0 0  
LEND 

-New values  for  weighting  elements  calculated  off-line so 

stored  above as MATDAT 
that they correspond to normalized  versions of those 

P M A T n A l  -. . . . . -. . . 
A =  - 0 . 1 0 ~ 0 .   4 9 ~ 0 . 0 ,  1.0, 0 . 0 .  -1.0, 4aro.o. 1.0, -0.20~- 

D= 2~0.0. 1.0. 4awo.o. 1.0. 6 9 8 ~ 0 . 0  

B =  2W0.0. 1 . 0 ,  48WO.O. 1.0, 198WO.O 
C=  1 .0 ,  100WO.O. 1.0,   2398WO.O 

RRINV= 1.0, 2 4 ~ 0 . 0  
N =  3 

.02, 2397WO. 0 

FUNCTION 4 0 4  
NORMALIZE  SYSTEM  MATRICES; 
NORMALIZING  FACTORS  ARE  READ I N  FROM U N I T  34  I F  NOT  PREVIOUSLY  SET 

I F  NOT  ALREADY  DONE.  DDEF  DATASET  CONTAINING  HAMELIST  'HRMS'  TO  UNIT 34 
PROCEEDING:  PAUSE . PROGRAM W I L L  PROCEED I F  -RUN  CDMMAND ISSUED. 

DDEF  FT34FOOl.VS.ANRMS 

GO 
PROCEEDING(PCS):  EXECUTION  CONTINUES AT CHCRWC.(X'4CD4') 

NORMALIZING  FACTORS  ARE 
fHRMS 
SCXZ  5.0,  3 . 0 .  2.0.  47WO.O 
SCUD 1.0. 9.0.  3xo.o 
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SCY' 4 . 0 ,  7 . 0 .  1 0 . 0 ,  47XO.O 
SCZ' 6 . 0 ,  4 X 0 . 0  
SCYSPZ 1 2 . 0 ,   1 1 . 0 ,  3r0.0 
&END 

NORMALIZED SYSTEM MATRICES 

THE A MATRIX I S  

1 2 

2 0 . 0 0 0 0  
1 - 0 . 1 0 0 0 D  0 0  0.6000 

3 0.0000 
0.0000 
- 1 . 5 0 0  

THE B MATRIX I S  

1 2 

1 0 . 0 0 0 0  
2 0 . 0 0 0 0  

0 . 0 0 0 0  

3 4 . 0 0 0  0.0000 
3 . 0 0 0  

THE C MATRIX I S  

1 2 

1 1 . 2 5 0  
2 0 . 0 0 0 0  0 .  o a a o  

0.0000 

THE H MATRIX I S  

1 2 

1 0 . 8 3 3 3  0.0000 

THE Q Q  MATRIX I S  

1 2 

2 0 . 0 0 0 0  
1 0 . 0 0 0 0  0.0000 

0 . 2 2 2 2  
3 0.0000 0.0000 

THE  RRINV  MATRIX I S  

1 

1 3 6 . 0 0  

THE D MATRIX I S  

1 2 

1 0.0000 
2 0 . 0 0 0 0  0 . 3 3 3 3  

0 . 0 0 0 0  

3 0 . 5 0 0 0  0 . 0 0 0 0  

THE DOUT MATRIX I S  

1 2 

2 0 . 0 0 0 0  
1 0 . 0 0 0 0   0 . 0 0 0 0  

1 . 2 8 6  

THE CSP MATRIX I S  

1 2 

1 0 . 4 1 6 7  0 . 0 0 0 0  
2 0 . 0 0 0 0  0.0000 

3 

0.0000 
0.6667 

-0 .2000D-02  

3 

0 . 2 8 5 7  
0 . 0 0 0 0  

3 

0 . 0 0 0 0  

3 

0.0000 
0.0000 
5.000 

3 

0 . 0 0 0 0  
0 . 3 6 3 6  

DESIGN A LINEAR  QUADRATIC REGULATOR 
FUNCTION 801 
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EIGENVALUES  OF  REGULATOR OR F I L T E R   I N   F N / Z E T A  FORM 
NAT FREQ (HZ)  ZETA 

0.2382 
0.4519 

0.7116 -Note that LQR eigenvalues  are  not  changed by process of 
1.000) 

ss = normalization (QC, NN, and PCINV  were  also  normalized) 

1  2 3 

2  156.3 
1  481.1  156.3 13.01 

3  13.01  10.91  6.588 
10.91 82.83 

1  2 3 

2  0.5789 
1 1.438  0.6821  0.9117 

0.4068 0.4042D-01 

FUNCTION 301 
FORM A-BKC MATRIX  

FUNCTION 809 
DESIGN  A KALMAN  F ILTER 

EIGENVALUES OF  REGULATOR OR F I L T E R   I N   F N I Z E T A  FORM 
NAT  FREP (HZ)  ZETA 

1  2  3 

1 0.1153 
2  0.2961 

0.2961 0.1482 

3 0.1482 
1.307 
1.477 

1.477 
4.591 

K E  : 

1 

1 3.459 
2 8.884 
3 4 . 4 4 6  

FUNCTION 019 
FORM FEED FORWARD MATRIX  FOR NON-ZERO SET  POINT CONTROL 

K F F  = 

1  2 

1  3.074 
2 1.552  -0.4999 

2.509 

FUNCTION 405 
UNNORMALIZE  GAINS  AND ERROR COVARIANCE  MATRIX;  
NORMALIZING  FACTORS  ARE  READ I N  FROM U N I T  34 I F  NOT PREVIOUSLY  SET 

NORMALIZING  FACTORS 
LNRMS 
S C X = - 5 . 0 ,  3.0,  2.0,  47360.0 
SCU: 8 . 0 ,  9.0, 3W0.0 
SCY: 4 . 0 .  7.0,  10.0, 47K0.0 
SCZ: 6.0,  4WO.O 
SCYSPZ 12.0,  11.0, 3360.0 
&END 

-Check shows  that the following  matrices  are  identical to those  previously computed: 

UNNORMALIZED  SYSTEM  MATRICES 

THE KC MATRIX  I S  

79 



1 2 3 

1 2.301 
2  1.042 

1.819 
1.220 0.1819 

3 . 6 4 7  

THE KE M A T R I X  IS 

1 

2 4.442 
3 1.482 

1 2.082 

THE KFF MATRIX IS 

1 2 

1 2.583 1.824 
2 1.164 - 0 . 4 0 9 0  

T H E  PP MATRIX I S  

1 2 3 

2  4.442 
1 2.882 4 . 4 4 2  1.482 

3 1.482 
11.76 8.865 
8.865 la. 37 

STORE THE N 1  FOR THIS R U N ?  c If new function number s t r ing   has  been  formed, i t  could  have  been  stored 
N 

T E R M I N A T E D :  STOP R E T U R N  a t  t h i s  po in t   for   fu ture   use  

PRINT OUTl,PRTSP=EDIT+User requests   output   dataset  (OUT1 i n  th i s   case)   to   be   p r in ted   ou t  

Test  Case I1 - Interactive  Design of a Nonzero-Set-Point Regulator 

Test case I1 demonstrates how AESOP can be used  in an  interactive  manner to design a feedback 
control system. The  same  third-order  state-variable system model used  in test case  I is considered, 
except that  the  outputs  of  primary  interest  are now the  set-point  outputs ysp. They are selected to be 
yspl =x1 and ysp2=x3 by proper  definition of matrix CSP. The following assumptions  are  made: 

(1) All three  states  are  measurable. 
(2) Both disturbance w and measurement noise v are  zero. 

The design problem is to compute  feedforward (KFF) and feedback (KC) gain  matrices such that  the 
resulting  closed-loop system meets the following design criteria: 

(1) Each  of  the  two  set-point  outputs  follows  a  step in its  corresponding set point with zero  steady- 
state  error. (This is insured by the nonzero-set-point  regulator  structure.) 

(2) Set-point  output  step  reponses  are well damped (Iess than 10 percent overshoot)  and  settle out 
in  less than 5 seconds. 

(3) For  a unit step on either set point,  excursions of the  two  control  variables must be such  that 
JulJs5 and bd55. 
The  resulting  closed-loop system is shown in figure 15. Basically, the design procedure followed is to 
vary  performance index weights in  an  interactive  fashion,  displaying  the  step  responses  of yspl and 
ysp2 for  each  candidate design and repeating the process  until  acceptable  transient responses are 
observed.  Once  transient  performance is considered  acceptable  (criteria 1 and  2  are satisfied),  the 
control  variable  responses are displayed to check that criterion 3 is also  met. 

The  input  data  that  define  the  problem  are  stored  in  dataset  TEST.CASE2, which is shown in 
figure 16. Note  that  the values of  some  of  the  reference  parameters  in  NAMELIST  REFS have been 
made  different  from the default values so as  to  obtain  the desired output variable selection and time 
step for  the  step responses. Also, unlike  test case 1 the  initial values of weighting matrices QC and NN 
are allowed to be zero, and PCINV is set equal to a 2 x 2  identity  matrix. 

To begin the design process the AESOP program is initiated as was done  in  test  case  I. When the 
program  prompts the user with the message READ  IN N1 FROM  STORAGE?,  the user replies “N.” 
The  program  then  prompts the user to enter  function  numbers  from the terminal 
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0 4 8 8 9 0 0  
0 4 8 9 0 0 0  
0 4 8 9 1 0 0  
0 4 8 9 2 0 0  
0 4 8 9 3 0 0  

0 4 8 9 5 0 0  
0 4 8 9 4 0 0  

0 4 8 9 7 0 0  
0 4 8 9 6 0 0  

0 4 8 9 8 0 0  
0 4 8 9 9 0 0  

Figure 15. - Nonzero-set-point regulator. 

Figure 16. -Data for test  case 11, contained  in  dataset TEST.CASE2. 

ENTER  NAMELIST DATA AS  '&N1 IFN = , , , &END 

and  the user responds with 

&nl  ifn = 202,203,801 &end 

The user then  datadefs  dataset TEST.CASE2 to unit 33. 

FUNCTION  202 
READ  INPUT  DATA -- MATRICES  AND  REFERENCE  VALUES  DEFINED 
IN  NAHELIZTS 'PIATDAT' AND 'REFS' 

IF  NOT  ALREADY  DONE9  DDEF  DATASET  CONTAINING  NAMELISTS 

CHCRU410 
'HATDAT' AND 'REFS' TO  UNIT  33 

PROCEEDING:  PAUSE 
ddef  ft33COOl~vsrtest.case2 
90 
CZAPB030 
DISPLAY  INPUT  MATRICES? 

PROCEEDING(FCS):  EXECUTION  CONTINUES A'l' CHCKUCt(X'4CD4') 

n 

The next requested  function (203) allows the user to enter  desired  performance  index weights. For 
this test case, weights on the  two  controls will be fixed at unity and  the weight on  state 1 will be 
varied. A low value (0.001) is selected initially, and  the program  proceeds to compute an LQR 
solution. 

FUNCTION 203 
DISPLAY  CONPAR  BEFORE  MAKING  CHANGES? 
Y 
ZCONPAR 
QC= 2SOO%O.O 
NN= 250%0.0 
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PCINU= 1.0, 5 $ 0 + 0 ,  1.0,  18$0.0 
PEND 
ENTER  CONTROL  UTS RCI N N  AND/OR PCINU  (NAMELlST  CONPAR)  

LCONPAR 

N N =  250*0 .0  
QC= 0.10D-029  2499$0.0 

PCINU= 1 . 0 ,  5$0.0~ 1.01  18$0.0 
LEND 

n 

Lconpar ac(lr1) = 0.001 tend 

ARE THERE ANYMORE CHANGES, Y OR N? 

FUNCTION 801 
DESIGN A LINEAR  QUADRATIC  REGULATOR 

EIGENVALUES OF REGULATOR OR F I L T E R   I N   F N / Z E T A  FORM 
NAT  FREQ (HZ)   ZETA 

0.1667D-01 1.000 
0,1593 

ss = 
0 s 2223D-01 

1 2 3 

KC = 

1 2 3 

FUNCTION 0 

TO TERMINATE  ENTER 999(LAST ENTRY MUST BE A RETURN) 
301 
819 
604 

TO COMPUTE FURTHERt  ENTER  NEXT  FUNCTION NOS*(IY)t ONE F E R  L I N E  

The user then  requests  that  step  responses be plotted  for a nonzero-set-point regulator.  This 
requires,  as  prerequisites,  forming of  A-B-KC and calculation of feedforward gain matrix KFF. 

FUNCTION 301 
FORM A-BKC M A l R I X  

FUNCTION 819 
FORM FEED FORWARD h A T R I X  FOR  NON-ZERO  SET P U l N T  CONTROL 

K F F  = 

1 2 

1 0.1048 0.2801D-01 
2 0 273711-02 -0  + 9996 
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F U N C T I O N  604 
O B T A I N  AND  PLOT  SELECTEI I   STEF '   RESPONSES 
F O R   T H E   N O N - Z E R O   S E T   P O I N T   L I N E A R   R E G U L A T O R  

S T A T E   T R A N S I T I O N   H A T R I X  OF L I N E A R   R E G U L A T O R   F O R   T I N E  S T t P  0 , 2 4 0 0  

1 2 3 

1 0.9763  0.2343 0,2831D-01 
2 -0.2602D-03 0.9664 0 2362 
3  -0.1108D-02 -0,2365 0.9648 

F O R C E D   R E S P O N S E   H A T R I X  OF L I N E A R   R E G U L A T O R  F O R  T I M E   S T E P  0 .2400  

1 2  3 

1 0.2371 0.2839Cl-01 0 * 227611-02 
2 -0.284111-04 0.2371 
3  -0.1349D-03 -0.2857D-01 0.2369 

0.2854Ib"l 

Next,  before plots can  be  obtained,  the user must indicate on which  device the plots are  to be 
generated by entering the user's terminal number (LAOOI), indicating that  plots  are to be displayed 
not  on  an off-line device but at  the user's terminal. 

G R I N T l O O  G R A P H I C S   D E V I C E   N O T   D E F I N E D  BY D D E F .  
E N T E R   U N I T   N A H E .   D E F A U L T  TO C A N C E L .  

la011 

Two plots are then displayed: one  for  the response of yspl to a step in Yspdly and  the  other  for ysp2 to a 
step in Yspd2- 

83 



1 . I  

0.' 

0.1 

0.; 

,-. O.( 

- 
v 0.t  

a 
ln 
> 

0.' 

0.3 

0.2 

0.1 

S T E P   R E S P O N S E S   F O R   N O N - Z E R O   S E T - P O I N T   R E G .  

I N P U T :   S E T   P O I N T   C O M M A N D   Y S P D  ( 1 
4 M P L I T U O E  = 1 - 0 0  

DEC 7 3  I982 
RUN NO. 3 
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With this low weighting on XI, the system  responses are obviously not acceptable, a fact also 
discernible  from an examination of the closed-loop eigenvalues  displayed by function 801. Thus the 
user requests  another  design iteration. 

TO COBPUTE  FURTHER,  ENTER  NEXT  FUNCTION N O S + ( 1 3 ) r  ONE PER L I N E  
FUNCTION 0 

2 0 3  
TO TERf l INATE  ENTER  999(LAST  ENTRY MUST HE A RETURN) 

8 0 1  

8 1 9  
3 0 1  

6 0 4  

This time, the  weight on x1 is increased to 1.0, and  the LQR and  feedforward  gains are 
recomputed. 

FUNCTION  203 
D ISPLAY CONPAR BEFORE  BAtiING  CHANGES? 
n 
ENTER  CONTROL WTS RC, NN AND/OR PCINU  (NAMELIST  CONFAR) 
Lconrar  c+c(lrl) = 10. gem# 

Lconpar  nc(1rl) = 10.0 Zend 
LCUNPAR 
Q C =   1 0 . 0 ,   2 4 9 9 t O . O  
NN= 2 5 0 t 0 . 0  
FCINU= 1.0. 5t0.0, 1 . 0 ,  18tO.O 
LEND 
ARE THERE ANYMORE CHANGES9 Y OR N? 
n 

F U N C T I O N   8 0 1  
DESIGN A LINEAR  QUADRATIC  REGULATOR 

EIGENVALUES O F  REGULATOR OR F I L T E R   I N   F N / Z E T A  FORM 
NAT  FREQ  (HZ)  ZETA 

0 , 1 3 9 2   1 . 0 0 0  
0 . 3 0 2 7  0.5564 

ss = 

1 2  

1 7 . 2 0 6   2 . 7 8 3  
2   2 . 7 8 3  
3   0 . 9 0 3 2  

1 , 9 5 0  
0 t 6 6 2 0  

KC = 

1 2  

1 0 . 9 0 3 2  0 t 6 6 2 0  
2 2 . 7 8 3  1 . 9 5 0  

F U N C T I O N   3 0 1  
FORB  A-RKC  MATRIX 

3  

0 9 0 3 2  
0 6620 
0 . 9 3 9 2  

3 

0 * 9 3 9 2  
0 t 6 6 2 0  

FUNCTION  819  
FORM FEED FORWARD MATRIX  FOR  NON-ZERO  SET  POINT  CONTROL 
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K F F  = 

1 2 

2 2.978 
1 1.069 0,9412 

-0 3380 

F U N C T I O N  604 
O B T A I N   A N D   P L O T   S E L E C T E P   S T E P   R E S P O N S E S  
F O R   T H E   N O N - Z E R O   S E T   P O I N T   L I N E A R   R E G U L A T O R  

S T A T E   T R A N S I T I O N   M A T R I X   O F   L I N E A R   R E G U L A T O R   F O R   T I M E  STEP 0.2400 

1 2  3 

1 0.9089 0.1832 0+7571D-02 
2  -0.5167 0.5573 0.5555D-01 
3 -0.8230D-01 -0.2934 0.7855 

F O R C E D   R E S P O N S E   M A T R I X   O F   L I N E A R   R E G U L A T O R   F O R   T I M E   S l E P  0.2400 

1 2 3 

1 0.2315 0.2420D-01 0.646911-03 
2 -0,6794D-01 0.1856 0 763611-02 
3  -0.1475D-01 -0.3928D-01 0.2138 

Now, the  damping  ratio of the complex  eigenvalue  pair  has  increased to 0.388, which  is  still too 
small to give  acceptably  damped  responses.  This  fact  is  confirmed  by the set-point  responses,  which 
are  displayed next. 
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Actually, the IO-percent overshoot criterion is met,  but yspl does  not  quite  reach steady state in less 
than 5 seconds. Thus  the user  begins a third design iteration,  choosing  the weighting on x1 to be 10 
this time. 

FUNCTION 0 
TO COMPUTE FURTHER,  EN 
TO TERMINATE  ENTER 999 

801 
203 

819 
30 1 

604 

TER  NEXT 
( L A S T   E N  

F U N C T I O N   N U S . ( I ( l ) r  ONE F t R  L I N E  
TRY MUST  HE A RETURN) 

FUNCTION 203 
D I S P L A Y  CONPAR BEFORE  MAtiING  CHANGES? 
n 
ENTER  CONTROL WTS  OC, N N  AND/OR PCINV  (NAMELIST  CONFAR) 

SCONPAR 
OC= 1.0,   2499$0.0 
NN= 250XO.O 

SEND 
ARE  THERE ANYMORE CHANGES, Y OR N? 
n 

PCINU= 1 . 0 1  5X0.0,  1 .0 ,   18*0 .0  

FUNCTION 801 
DESIGN A LINEAR  QUADRATIC  REGULATOR 

EIGENVALUES OF REGULATOR OR F I L T E R   I N   F N I Z E T A  FORfl 
NAT  FREO ( H Z )  ZETA 

0+952411-01 1.000 
0 2063 0 3879 

The  preceding eigenvalues indicate that response  time  should  now  be acceptable as the slowest 
eigenvalue (A1 = 0.1392 Hz = 0.875 rad/sec) should give a settling time ( - 4/Al) of about 4.5 seconds. 

ss = 

1 2 

1 1.285  0.6844 
2 0.6844 
3 0.5240  0.3449 

0 + 7483 

tic = 

1 2 

1 0.5240 0 3449 
2 0.6844 0.7483 

FUNCTION 301 
FORM A-HtiC  MATRIX 

3 

0.5240 

0 + 7536 
0 + 3449 

3 

0,7536 
0,3449 

FUNCTION 819 
FORM FEED FORWARD MATRIX  FOR  NON-ZERO  SET  POINT  CONTROL 
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KFF = 

1 2 

1 0 . 6 5 8 5  0 .7556  
2 0 . 7 5 9 2  -0 6551 

F U N C T I O N  604 
O B T A I N  A N D   P L O T   S E L E C T E D   S T E P   R E S P O N S E S  
FOR T H E   N O N - Z E R O   S E T   P O I N T   L I N E A R   R E G U L A ' I O R  

S T A T E   T R A N S I T I O N   M A T R I X  OF L I N E A R   R E G U L A T O R  FOR T I M E   S T E P  0 .2400  

1 2 3 

1 0 .9574  0 . 2 1 3 8  0+1648[1-01 
2 - 0 . 1 5 4 9  0 , 7 9 6 7  0 . 1 2 9 2  
3 -0.8876D-01 - 0 , 2 7 8 5  0 . 8 1 7 5  

F O R C E D   R E S P O N S E   H A T R I X  OF L I N E A R   R E G U L A T O R   F O R   T I M E  S'IEP 0 , 2 4 0 0  

1 2 3 

1 0.2356 0 m 2673D-01 0 1366D-.OZ! 
2 -0.1901D-01 0.2164  0 .1662D-01 
3 - O . I Z O ~ D - O I  - o . ~ s ~ I D - o ~  0 .2177  

The  step  responses  confirm  that  both  set-point  output  transients are acceptable. 
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As a  final  check,  the  control  responses  are examined for  this design to see that  required  control 
excursions are within limits (*5.0).  To do this,  the user requests  function 101, which allows changes 
to be made in reference values. In  particular,  the user changes elements of  transient response 
selection matrices MSYSP and MSPU so as to request  both  the  control  responses  and  the  output 
responses,  thus displaying the  interaction between output I and  input 2 and vice-versa. 

FUNCTION 0 
TO  COMPUTE  FURTHER,  ENTER  NEXT  FUNCTION  NOS+(I3),  ONE PER LINE 
TO  TERMINATE  ENTER  999(LAST  ENTRY  MUST  BE A RETURN) 
101 
604 

FUNCTION 101 
CHANGES  TO  REFS 

DISPLAY  REFS  BEFORE  MAKING  CHANGES? 
n 
ENTER  CHANGES 'IO NAMELIST  REFS  [TSFTR,  DT,  FIY IIELF,  ZERflAX! AMPSF', AMPSR,  

MSPYSP, H S P U ~  MSROLY,  MSROLX, )?ICCLY, MICtLX, MICCLU,  HICOLY,  MICOLX) 
AMPICXr IF,  ISPACE,  IOUT,  IMEASt  JINCI JIND, ITRMXt  NCURVv LINLOli, M'SPYv 

The  program  then  displays  the  reference values and  plots  the  requested  transients. 

SREFS 
8REFS m s ~ r s ~ ~ 1 ~ 1 ~ = 0 ~ 1 ~ m s r r s r ~ 1 ~ 2 ~ = 1 ~ 0 ~ ~ ~ ~ r t ~ ~ l , l ~ = 1 , 1 , ~ ~ ~ ~ 1 ~ ~ 1 , 2 ~ = 1 ~ 1  L e n d  

TSFTR= 1 .0  
DT= 0.240 
FI= 0.1.O.U-01 
DELF= 0.1Ol3-01 
ZERflAX= LOO.0 
AMPSF = 5x I. 0 
AMPSR= 581.0 
AflPICX= JOY1.0 
IF= 90 
ISPACE= 1 
IOUT= 1 

JINC= 1 
IMEAS= 1 

JlNIl- 1 
ITRMX= 100 
NCI-IRV= 2 
LINLqG-. 2 

HSPYSP= C ' t  1, ?x07  1, 1 9 1 C  
MSPY.. 2 5 0 x 0  

MSFU= 2x1. 3x0. 261.7 18x0 
M S R O L Y =  2 J C $ O  
HSROLX=  2x1, 8x09 2 $ 1 ,  238X:O 
MICCLY= 1, 2499x0 
HICCLX= 2500x0 
MICCLU= 250x0 
HICOLY= I r  24991'0 
MICOLX= 1 9  50x09 1. 2448*0 
SEND 
ARE THERE  ANYMORE  CHANGES,  Y OR N? 
m 

FUNCTION 604 
OBTAIN  AND  PLOT  SELECTEn  STEP RESPONSES 
FOR  THE  NON-ZERO  SET  POINT  LINEAR  REGULATOR 

STATE  TRANSITION  MATRIX OF LINEAR  REGULATOR  FOR TIflE STEP 0.2400 

1 2 3 

1 0 . 9 0 8 9  0.1832 
2 -0.5167 0.5573 

0.7571?-02 

3 -0.8230D-01 -0.2934 
0.55S5D-01 
0 .7855  
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F O R C E D   R E S P O N S E   M A T R I X   O F   L I N E A R   R E G U L A T O R   F O R   T I M E   S T E P  0 .2400  

1 2 3 

1 0,2315 
2 -0.6794D-01 0.1856 
3  -0.1475D-01  -0.3928D-01  0.2138 

0.2420D-01 0.6469D-03 
0.7636D-02 
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I- 
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STEP  RESPONSES FOR NON-ZERO  SET-POINT REG. 

0.0' 

0.0: 

0.0; 

0.01 

- 0.00 

- 
- -.01 

a 
m 
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" 0 2  

-.03 

-.o+ 

-.05 

INPUT: SET  POINT  COMMAND  YSPD ( 2 1 
AHPLITUDE = 1 .oo 

DEC 7 s  I982 
RUN NO. 3 

I I I I I I I I I I 
5.0  7.5 10.0 12.5 15.0 17.5  20.0  22.5 25.0 

T I H E  

Note  that  there  is  some  interaction between input 1 and  output 2 but  little between input 2 and 
output 1. 

Finally, the  four  control responses are displayed. These responses confiim  that design criterion 3 
has been met. That is, both  control signal absolute  magnitudes  remain less than 5 during a step 
response.  The  maximum  excursion for u1 is + 1.07 and  that  for u2 is +2.98, both well below the 
design limits. 
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DEC 7 s  I982 
RUN NO. 3 
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After  the  responses are displayed, the user is again  prompted for more requests, at  which  time  the 
user  terminates the program.  The  terminal session ends  with the user requesting a printout of the 
output  dataset  (OUT=)  that  was  generated  during the present  run for further off-line analysis  if 
desired. 

F U N C T I O N  0 
T O   C O M P U T E   F U R T H E R 9   E N T E R   N E X T   F U N C T I O N   N O S . ( I 3 ) ,   O N E   P L R   L I N E  
TO T E R M I N A T E   E N T E R   9 9 9 C L A S T   E N T R Y   M U S T   H E  A R E T U R N )  
999 

S T O R E   T H E   N 1   F O R   T H I S   R U N ?  
n 
C H C R W 4 0 0   T E R M I N A T E D :   S T O F '   R E T U R N  
erint  outaavPrtsr=edit 
C Z A H D O S O   P R I N T   P S N = 0 4 9 8 r  800 L I N E S  
o f f  
P007 
L O G I C A L   D I S C O N N E C T ,   L O G O N  OR HANG  UP 

L @ G @ F F  A T  1 4 1 4 0   @ N   0 7 / 0 7 / 8 1  - C'F'LI TlHE= 0 . 0 7   M l H U T E S .  

101 



Appendix D 
Terminal  Output  Options  and  Main PROCDEF 

This  appendix includes (1) a list of those  items included in the  “standard”  terminal  output, (2) a 
list of  those  items  included  in  the  “extended”  terminal output,  and (3) the  PROCDEF  that is  used to 
set up  the  program  before it  is run. 

Standard  Terminal  Output 

The following data will be displayed  in  the user’s terminal if the user has  requested  the  functions 
that generate  these  data: 

(1) NAMELIST N1 
(2) NAMELIST  REFS 
(3) NAMELIST  CONPAR 
(4) NAMELIST  ESTPAR 
( 5 )  NAMELIST  MATDAT 
(6) Open-  and  closed-loop eigenvalues 
(7) Kalman filter eigenvalues 
(8) Transfer  function  numerator  and  denominator  polynomial  coefficients 
(9) Transfer  function  gains 

(10) Maximum and  average  symmetry  error  for  the SS and PP matrices 
(11) Positive-definiteness checks for  the SS and PP matrices 
(12) Maximum element of and trace of the  residual  error  matrix  for  the  control  and Kalman filter 

(13) Lyapunov  error check data consisting of 
Riccati equations 

(a) Trace  of  residual 
(b) Normalized  diagonal elements of  error  matrix 
(c) Trace of error 
(d) Trace of covariance 
(e) Ratio  of  trace of error to trace  of  covariance 

(14) Normalizing  factors 
(15) Error messages 

Extended  Terminal  Output 

The  extended  terminal output consists  of all of  the  standard  terminal  output plus 
(1) Input  matrices 
(2) All eigenvectors and mode  shapes 
(3) The ATOT, CTOT, DTOT, KCTOT, and HTOT matrices 
(4) The SS matrix 
( 5 )  The PP matrix 
(6) The KC matrix 
(7) The KE matrix 
(8) The KFF matrix 
(9) All covariance  matrices 

. (10) Controllability check matrix 
(1 1) Observability check matrix  (through H) 
(12) Observability check matrix  (through C) 
(13) Transfer  function  gains and zeroes 
(14) All state-transition  matrices 
(15) All forced-response  matrices 
(16) Symmetry  error  matrix  for the  control Riccati equation 
(17) Residual  error  matrix for  the  control Riccati equation 
(18) Symmetry  error  matrix for  the Kalman  filter Riccati equation 

1 02 



(19) Residual  error  matrix for  the  Kalman filter Riccati equation 
(20) Normalized  system matrices: A, B, C,  H, QQ, RRINV, D, DOUT, and CSP 

PROCDEF AESRUN 

The user invokes the following PROCDEF,  AESRUN,  before  running  the  AESOP  program.  The 
purpose of the  PROCDEF is to datadef all necessary libraries and required datasets.  The  PROCDEF 
requires one parameter  (up to three characters), which  is  used to label all datasets  that may be 
generated  during  the  subsequent  run  of  the  AESOP  program. 

AESRUN 0000000 PROCDEF  AESRUN 
AESRUN oooO100 PARAM $1 
AESRUN oooO200 ERASE  OUT$l 
AESRUN oooO300 DDEF FT06F001 ,VS,OUT$l  ,DCB = (RECFM = V,LRECL = 132),RET = T 

AESRUN oooO500 DDEF  FTO8F001,.VS,CG$l;  DISPLAY  'CG$1 IS DDEFD  TO  IO  UNIT 8' 
AESRUN oooO600 DDEF  FT09F001,VS,EG$l;  DISPLAY  'EG$1 IS DDEFD  TO  IO  UNIT 9' 
AESRUN oooO700 DDEF  FTlOFOOl,VS,PFRUZ$l;  DISPLAY 'PFRUZ$l IS DDEFD  TO  IO 

AESRUN oooO800 DDEF  FTllF001,VS,PFRUY$l; DISPLAY  'PFRUY$l  IS  DDEFD  TO  IO 

AESRUN oooO900 DDEF  FT12F001,VS,PFRWZ$l;  DISPLAY  'PFRWZ$l IS DDEFD  TO  IO 

AESRUN 0001000 DDEF  FT13F001,VS,PFRWY$l;  DISPLAY  'PFRWY$l IS DDEFD  TO  IO 

AESRUN 0001100 DDEF  FT14F001,VS,CFR$l;  DISPLAY  'CFR$l IS DDEFD  TO  IO  UNIT 

AESRUN 0001200 DDEF  FT15F001,VS,PP$l;  DISPLAY  'PP$1 IS DDEFD  TO  IO  UNIT  15' 
AESRUN 0001300 BBEF FT16F001,VS,SS$l;  DISPLAY  'SS$l IS DDEFD  TO  IO  UNIT 16' 
AESRUN 0001400 DDEF  FT17F001,VS,FFG$l;  DISPLAY  'FFG$l IS DDEFD  TO  IO  UNIT 

AESRUN 0001500 DDEF  RUNl,VP,GRAPHICS,  OPTION=  JOBLIB; DISPLAY  'RUN1 IS 

AESRUN 0001600 DDEF  RUN2,VP,AESLIB,OPTION = JOBLIB:  DISPLAY  'RUN2 IS 

AESRUN 0001700 LOAD BLOCKA9; LOAD  AESOP 

AESRUN oooO400 DISPLAY 'OUT$l IS DDEFD TO  THE  HI-SPEED  PRINTER' 

UNIT  10' 

UNIT 11 ' 

UNIT  12' 

UNIT  13' 

14' 

17' 

LIBRARY GRAPHICS' 

LIBRARY  AESLIB ' 

Eleven VS datasets that  are  to  contain  program  input  or  output  are  datadeffed by this PROCDEF. 
Table  I lists these datasets plus four  others  that  might  be  datadeffed by the user during  the  course of 
running  the  program. 
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Appendix E 
Flow Chart 

This  appendix  contains  a  subroutine flow chart of the  numbers  are listed (in parentheses) below the  name of the 
AESOP program in "tree" form.  Where specific func-  subroutine. 
tions are performed in a subroutine,  the  function 

AESOP --I 
-PLOTSUBS 

- - A E s ~ o o - - I  
( 1 0 1 , 1 0 2 )  I "PREREQ 

I--AES3OO--i 
( 3 0 1 . 3 0 2 , )  

( 3 0 3 )  I "PREREQ 

I --MATPRT 

l A E s 4 0 0 - - '  

1 --PREREQ 

1 --MATPRT 
I I 

"EIGEN -- 
( 4 0 1 )  

--ARRAY 

I --HSBG 

I -EIGQR 

"SCALEA 

--CONDI -- 
--SCALEA 

I 
I--REDU 

--EGVCTR--I I ( 4 0 2 '  j--RATPRT 
--ARRAY 

--FACTR 

--PRMUTE 

! 
--MODSHP-- 

( 4 0 2 )  I 
I --RATPRT 
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I i --MXINV 

/--PREREQ 

--FRSPNS-- 
( 5 0 1 , 5 0 4 . )  
( 5 0 7 , 5 1 0 . )  
( 5 1 3 , 5 1 5 , )  
( 5 1 7 , 5 1 9 . )  
( 5 2 1 . 5 2 3 )  

"FRQP "/--FRpOLY 

--BOLLIH--I 

--DAVIS0 

--DANSKY-- 

--POLMPY 

I--BODE - - I  
( 5 0 2 . 5 0 5 . ) 1  
( 5 0 8 . 5 1 1 , ) l  
( 5 1 4 , 5 1 6 . )  
( 5 1 8 . 5 2 0 , )  
( 5 2 2 , 5 2 4 )  i 

I-PLOTSUBS 

-AES600-- 

"PREREQ 

- -STP --I ( 6 0 1 , 6 0 4 )  

I-PLOTSUBS 

I --ICRSP --I 
( 6 0 2 . 6 0 3 )  

I 

-AE5700-- 

--PREREQ 

"MATPRT 

I-- ZEROES-- 
( 7 0 1 , 7 0 2 , )  
( 7 0 3 , 7 0 4 . )  

( 7 0 5 )  

--ARRAY 

"HSBG 

--EIGQR 

--CONDI -- 
--SCALE4 

--REDU 
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.-AES800-- 
8 0 2 . 8 0 6 , .  
808,810.:  
814.816)  

--GAIN 
: 7 0 1 , 7 0 2 , )  
7 0 3 . 7 0 4 , )  

( 7 0 5 )  

.-PREREQ 

.-MATPRT 

.-CONTRL-- 
( 8 0 1 )  

--MATPRT 

--RICSS -- 
"MATPRT 

--ARRAY 

--EIXINV 

--ORDER 

I--E1GQR 
I - -SCALEA 1 --HSBG 
i - -EGCK --I j --PIODSHP-- I 

I 
I 
I - -EGVCTR- -~  

I 

I --MATPRT 

I "MATPRT 

I - - A R R A Y  

I "FACTR I --PRMUTE 

--ARRAY 

I "SCALEA 
I 
I --REDU 

-EGVCTR-- 
(80/1)  

"MATPRT 

--ARRAY 

"FACTR 

I --PRMUTE 

-MODSHP-- 

-RICCHK-- 
8 0 7 , 8 1 5 )  

--MATPRT 

-ESTMAT-- 
(809 )  I 

I --MATPRT 

I--MATPRl 

I "MXINV 
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--ORDER 

--EIGQR 

"SCALEA 

--HSBG 

--EGCK " 1  
--MODSHP-- I 
I 1--MATPRT 

--EGVCTR-- 

--MATPRT 

--ARRAY 

--FACTR 

--PRMUTE 

-COVAR -- 
( 8 1 7 )  

"MATPRT 

-1YPCK - - I  
(818)  

--ARRAY 

--LAPNV -- 

i --MXINV 
( 8 1 9 )  

-AES900-- 
9 0 1 . 9 0 2 . )  
9 0 3 . 9 0 4 )  I 

--MATPRT 

"ARRAY 

"LAPNV -- 

"MXADO 

"MXMLT 

"MXTRA 

--MXINV 

--DSCA 

"MXADO 

"MXMLT 

"MXTRA 

--MXINV 

--DSCA 

--UZR901 

--UZR902 

--UZR903 

"UZR904 
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Appendix F 
Prerequisite  Table 

This appendix  contains the information used  by the 
AESOP program to make  prerequisite checks. These 
checks are  performed  before each AESOP iunction is to 
be executed to see that  the necessary iunction or com- 
bination of functions  has been performed  prior to 
execution of the present function.  Table XI1 lists this 
prerequisite check information in the  following  form: 
The specific prerequisite  function or combinations  of 

functions are listed across  the top,  and each function 
whose prerequisites are  to be checked is listed on  the  left. 
A checkmark  appears  in a row to indicate  a  prerequisite. 
Multiple  checkmarks  in  a row indicate  that the corre- 
sponding  prerequisites  are to be logically “ANDed.”  For 
example, the logical prerequisite  statement for function 
303 is (201 OR 202) AND (205 OR 801) AND (206 OR 
809). 
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TABLE XII. - PREREQUISITES FOR AESOP FUNCTIONS 
d 

Function Prerequisite  function c 404 501 
- 
201 
3r 
202 

- 

X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 

X 
X 

X 

X 

X 

X 

X 

1 
- 
319 
)r 
209 

- 
206 
or 
809 

X 
X 

- 
504 

X 
X 

- 
507 

X 
X 

X 

- 
510 

X 
X 

X 

X 

- 
513 

X 

- 
515 

X 

- 
519 

X 

- 
523 

- 
205 
or 
801 

X 
X 
X 

- 
207 
or 
801 

- 
!08 
)r 
309 

- 
301 

- 
303 !05, 

!06, 
301, 
)r 
309 

101 
~ 102 

201 
202 
203 
2  04 
205 
206 
207 
208 
209 
210 

301 
302 
303 

401 
402 
403 
404 
405 

501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 

519 
518 

520 
521 

x 
X 

X 
X 

X 
X 

X X 

X 
X 

X 

X 



TABLE X I I .  - Concluded, 
Function -""" Prerequisite  function 

None 201  205  206  207  208  301 ' 302  303  205,  401 ' 402  404  501 504 507 510 513 ' 515 517 519  521  523  801  803  809  817  819 
or 
ZU9 

""""" "-"""" 

or or or or or 
202 801 809 801 809 

206, 
801, 
or 
809 

""""" ""-" ~ " -  
522 
523 
524 
525 

601 
602 
603 
604 

701 
7  02 
703 

7  05 
704 

801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
81 7 
818 
819 

I 901 
820 

X 
X 

x x  
X 
X 
X 
X 

X 
X 

X 

X 

X 

X 

X 

X 

X 
X 

X 

X 

X 
X 

X 
X 

1 i 

X 

X 
X 

x 

X 

X 
X 

X 
X 

X 
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